首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Effects of helium group gases and nitrous oxide on HeLa cells   总被引:2,自引:0,他引:2  
The helium group gases and nitrous oxide at superatomospheric pressures depress multiplication of HeLa cells in monolayer cultures. The effectiveness of these gases in eliciting the pressure-dependent response follows the order N2O, Xe > Kr > Ar > > Ne and He. The response correlates with lipid solubility of the gases. Depression of growth by 4.2 atm Xe is reversible after exposure for one and two days. Cultures exposed to 7.2 atm Xe show irreversible damage including cytoplasmic vacuolization. Cell attachment is strongly inhibited by Xe; 36% of the cell inoculum were not attached after 24 hours. Affinity for hydrophobic sites in the cell is suggested as determining the order of effectiveness of the gases in evoking the response.  相似文献   

2.
The applications of endohedral non-metallic fullerenes are limited by their low production rate. Recently, an explosive method developed in our group shows promise to prepare He@C60 at fairly high yield, but the mechanism of He inserting into C60 cage at explosive conditions was not clear. Here, ab initio molecular dynamics analysis has been used to simulate the collision between C60 molecules at high-temperature and high-pressure induced by explosion. The results show that defects formed on the fullerene cage by collidsion can effectively decrease the reaction barrier for the insertion of He into C60, and the self-healing capability of the defects was also observed.
Figure
Simulation of He@C60 formation by explosive method. Ab initio molecular dynamics has been used to simulate collision of C60. Defects caused by fullerenes reaction in explosion are shown by theory. The defects decrease the reaction barrier for He inserting into C60 cage. The method provides a promising technique to synthesized He@C60  相似文献   

3.
The complexes of phage T4 lysozyme L99A with noble gases have been studied by molecular dynamics simulation. In a long simulation of the complex with one Xe atom, the structure was found to undergo global conformation change involving a reversible opening and closing of the entrance to the substrate-binding site, during which the conformations of the N and C-terminal domains varied little. The distributions of Xe positions sampled in dynamics simulations were refined in terms of anisotropic Gaussian distributions via least-squares minimization of the difference between Fourier transforms. In addition, molecular transformation simulations have been applied in order to calculate the binding free energies of Xe, Kr and Ar relative to a standard state at a pressure of 1 bar. A single bound Xe is found to assume an equilibrium distribution over three adjacent preferred sites, while in a two-Xe complex, the two Xe atoms preferentially occupy two of these. The positions of the three sites agree closely with the positions of bound Xe determined in the refined crystal structure of a complex formed at a pressure of 8 bar Xe, and the calculated affinities agree well with the observed partial occupancies. At a pressure of 8 bar, a mixture of one-Xe and two-Xe complexes is present, and similarly for complexes with Kr and Ar, with single occupancy relatively more prevalent with Kr and Ar. (Binding of a third Xe atom is found to be quite unfavorable.) A comparison with simulation results for the binding of benzene to the same site leads to the conclusion that binding of Xe within cavities in proteins is common because of several favorable factors: (1) Xe has a large atomic polarizability; (2) Xe can be applied at a relatively high pressure, i.e. high chemical potential; (3) an unfavorable entropic term related to the need to orient the ligand in the binding site is absent. Finally, it is found that the model's binding energy of a water molecule in the cavity is insufficient to overcome the unfavorable binding entropy.  相似文献   

4.
5.
We present the results of molecular dynamics (MD) computer simulations of rare gas diffusion through breathable nanotubes with pentagon–heptagon pair defects resulting in constrictions and knees. Diffusion involves interrupted high speed “choppy” motion with intermittent reversal in velocity direction. Single atoms exhibit a spiral-like path, in contrast to atoms traveling in groups. Considerable resistance to flow appears to reside in the upstream section of the nanotube where density gradients are small, prior to the constriction. Subsequently, considerable density gradients are present and speeds increase, becoming greatest at the tube exit. For the nanotubes examined, Kr and Xe diffusion was too hindered to provide reliable results. Diffusion of He through the nanotubes with knees occurs in a single-file fashion nearly along the center of the tube and the knee has no detectable effect on the diffusion kinetics. Transport diffusion coefficients are in the order of 10-4–10-2?cm2/s.  相似文献   

6.
The interaction of a noble gas jet (Xe, Kr, He) with a laser plasma at a distance of ~1 cm from a solid target (Mg, (CH2)n, LiF, or CF4) was studied for the first time. The line spectra that were excited in the course of charge exchange of multicharged ions with noble gas atoms in the interaction region were recorded. A clean (debris-free) soft X-ray source excited by laser pulses focused into a xenon jet was designed and investigated.  相似文献   

7.
Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.  相似文献   

8.
Using first-principles calculations based on density functional theory, we demonstrate that Si60 fullerene cage can be stabilized by exohydrogenated method. In contrast to previous theoretical studies that Si60 fullerene geometry construction will be seriously distorted when it is bare or encapsulated by metal atom clusters, exohydrogenated scheme shows that Si60H60 cage will be able to keep perfect fullerene structure similar to C60.  相似文献   

9.
The properties of noble gas systems can be greatly extended by heterogeneous mixtures of elements. The geometrical structures and energies of mixed Ar–Kr–Xe clusters were investigated using ternary Lennard-Jones (TLJ) potential. For the Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters investigated, the results show that only two minimum energy configurations exist, i.e., polytetrahedron and six-fold pancake. The inner core of all these clusters is composed mainly of Ar atoms, and Kr and Xe atoms are distributed on the surface with well mixed pattern for polytetrahedral and segregate pattern for six-fold pancake configurations. The relative stability property of Ar–Kr–Xe clusters with a certain composition is discussed. Moreover, the role of heterogeneity on the strain was investigated, and reduced strain energies in Ar–Kr–Xe clusters were studied to find possible ways of reducing strain. The results showed that the strain energies were affected mainly by Ar–Ar, Ar–Kr, and Xe–Xe bonds.
Figure
Investigation of the structures of Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters reveal the existence of only exist two minimum energy configurations, i.e., polytetrahedron and six-fold pancake. Furthermore, reduced strain energies in Ar–Kr–Xe clusters were studied for the possible ways of reducing strain.  相似文献   

10.
Hydrogenation from C60 to C60H60 was studied by an unrestricted broken spin symmetry Hartree–Fock approach implemented in semiempirical codes based on the AM1 technique. The calculations focused on the successive addition of hydrogen molecules to the fullerene cage following the identification of the cage target atoms by calculating the highest atomic chemical susceptibility at each step. The results obtained are analyzed from energy, symmetry, and composition perspectives.  相似文献   

11.
The cyanation of C60 to C60(CN)18 and the aziridination of C60 to C60(NH)9 were studied by an unrestricted broken spin symmetry Hartree–Fock approach implemented in semiempirical codes based on the AM1 technique. The calculations focused on the successive addition of CN and NH moieties to the fullerene cage following the identification of the target cage atoms as those with the highest atomic chemical susceptibilities calculated at each step. The results obtained were analyzed from the viewpoint of the parallelism between these derivatives as well as C60 fluorides and hydrides. The difference between the first-stage C60 chlorination and other sterically free processes is discussed.  相似文献   

12.
Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation.  相似文献   

13.
A method is described for estimating solubility by fitting both solute and solvent properties in a single equation. The method is illustrated by examining the solubilities of five rare gases (He, Ne, Ar, Kr, Xe) and five 'permanent' gases (O(2), N(2), CH(4), CF(4), SF(6)) in either n-alkane (C(5)H(12) to C(16)H(34)) or alkan-1-ol (CH(3)OH to C(11)H(23)OH) solvents. Generally, the correlation (R(2)) values of the fits achieved were significantly better than 0.9. It is suggested that similar methods can be used for estimating other physico-chemical properties such as excess molar volumes and enthalpies of solution.  相似文献   

14.
15.
Fullerene molecules are cage-like nanoscopic structures with pentagonal and hexagonal faces. In practical applications such as fullerene-reinforced nanocomposites (FRNCs), these structures may be subjected to tension force. In this research, we employ molecular dynamics (MD) simulation to compute the behaviour and deformation of different fullerene molecules, ranging from C60 to C2000, under tension force. To model the interactions between carbon atoms in the MD simulations, the adaptive intermolecular reactive bond order (AIREBO) force field is used. The displacement–force and the displacement–strain energy curves are obtained. It is observed that a new type of structural instability occurs in the fullerene molecules when the applied tension force increases. This abnormal structural instability in the fullerenes is investigated for the first time in the literature. The critical tensile forces and the corresponding mode shapes are determined for different fullerenes. The results indicate that the critical forces and deformations strongly depend upon the number of carbon atoms.  相似文献   

16.
Some endohedral fullerenes have been considered as possible candidate species for molecular memories. Recently, the encapsulation inside the fullerene cages has been extended from atoms to small molecules, for example the nitrogen molecule was placed inside the fullerene cage. The observed N2@C60 endohedral is computed in the paper together with NH3@C60, which was not yet observed. The computations are based on structural optimizations using density-functional theory (DFT) methods. In the optimized structures, the analytical harmonic vibrational analysis was carried out and the encapsulation energetics were evaluated using the second order Møller-Plesset (MP2) perturbation treatment. The lowest-energy structure has the N2 unit oriented towards a pair of parallel pentagons so that the complex exhibits D 5d symmetry. At the MP2 level, the encapsulation of N2 into C60 brings a potential energy gain of ? 9.3 kcal/mol while that for NH3 is ? 5.2 kcal/mol. The entropy term is also evaluated, yielding the standard Gibbs-energy change at room temperature for the encapsulation of N2 and NH3 of ? 2.6 and 1.5 kcal/mol, respectively. Some computed structural and vibrational characteristics are also reported. Emerging broader landscape of future applications of such encapsulates in nanoscience and nantechnology is discussed.  相似文献   

17.
Xenon computed tomography (Xe-CT) is used to estimate regional ventilation by measuring regional attenuation changes over multiple breaths while rebreathing a constant Xe concentration ([Xe]). Xe-CT has potential human applications, although anesthetic properties limit [Xe] to 相似文献   

18.
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the brain of vertebrates. Ferrous Ngb binds dioxygen with high affinity and the O2 adduct is able to scavenge NO. Convincing in vitro and in vivo data indicate that Ngb is involved in neuroprotection during hypoxia and ischemia. The 3D structure of Ngb reveals the presence of a wide internal cavity connecting its heme active site with the bulk. To explore the role of this “tunnel” in the control of ligand binding, we determined the structure of metNgb and NgbCO equilibrated with Xe or Kr. We show four docking sites for Xe (only two for Kr); two of the four Xe sites are within the large cavity. They are only partially conserved in globins, since the two proximal Xe sites identified in myoglobin (Xe1 and Xe2) are absent in Ngb, as well as in cytoglobin. The Xe docking sites in Ngb map a pathway within the protein matrix, leading to the heme, which becomes more accessible in the ligand-bound species. This may be of significance in connection with the redox chemistry that may be the primary function of this hexacoordinate globin.  相似文献   

19.
Mixed surfactants have potential applications in various fields. The understanding and prediction of their macro- and microscopic properties are of great importance in the designing of these materials. We used molecular dynamics (MD) and experiments to study the interfacial tension and the microscopic structures of the sodium dodecyl sulfate (SDS)/C4mimBr mixed surfactant at the water/hexane interface. The interfacial tension, density profile, radial distribution function (RDF), orientation distribution of the tails and order parameters have been examined. It seems that the addition of C4mimBr decreased the interfacial tension; a higher C4mimBr concentration resulted in a thicker interface, a smaller droplet, and more disordered SDS tails. The competition between free volume and electrostatic shielding seems to be the primary mechanism behind these phenomena.  相似文献   

20.
We report first-principles calculations carried out to analyze the adsorption of calcium on the outer surface of the fullerene C60, yielding [C60?+?mCa]. Geometric optimization (GO) and molecular dynamics (MD) simulation were performed using the plane-wave pseudopotential method within the framework of density functional theory (DFT) and time-dependent DFT (TD-DFT) to investigate the configurations, the associated energies in the ground state, and the stabilities of fullerenes and endofullerenes doped with radioactive sodium iodide when they interact with calcium atoms on the outer fullerene surface (i.e., [nNa131I@C60?+?mCa]). The reason for investigating these calcium-functionalized (endo)fullerene systems was to gauge their potential stability when used as vectors to deliver radioiodine to cancerous tissue in the human body. In the simulations, we found that the geometric limit on the number of calcium atoms that can be physisorbed on the outer surface of an empty fullerene while maintaining its structural stability is 28 calcium atoms, which also takes into account the proportional expansion of the fullerene as the number of absorbed calcium atoms increases. However, the stability of a fullerene system during calcium adsorption also strongly depends on whether any atoms or molecules are being encapsulated by the fullerene, as these encapsulated atoms/molecules can also interact with the fullerene and influence its stability. A Mulliken electronegativity analysis revealed that, when atoms inside and/or outside the fullerene donate charge (electrons) to the fullerene, the fullerene expands. The excess charge on the carbon atoms of the fullerene weakens some of the carbon–carbon bonds, potentially causing them to break, in which case the fullerene loses its ability to encapsulate molecules and releases them.
Graphical Abstract DFT simulation of a endo fullerene doped with radioactive sodium iodide interacting with 28 calcium atoms in a geometric arrangement
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号