首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofouling is a major problem faced by marine industries. Physical and chemical treatments are available to control fouling, but most are costly, time consuming or negatively affect the environment. The use of aeration (ie continuous streams of air bubbles) to prevent fouling was examined. Experiments were conducted at three sites with different benthic communities. Experimental panels (10 cm × 10 cm; PVC and concrete) were deployed with or without aeration. Aeration flowed continuously from spigots 0.5 m below the panels at a rate of ~3.3 to 5.0 l min?1. After 1 and 4 weeks, aerated PVC panels from all sites had significantly less fouling than non-aerated controls. Aeration reduced fouling on both the PVC and concrete surfaces. Fouling was reduced on panels directly in bubble streams while panels 30 cm and 5 m away had significantly more fouling. Thus, under the conditions used in this study, aeration appears to be an effective and simple way to prevent fouling.  相似文献   

2.
The physical roughness of a surface changes when freshwater biofilms colonize and grow on it and this has significant implications for surfaces enclosing water conveying systems such as pipelines and canals. Plates with surfaces initially artificially roughened with varying grit size were deployed in an open channel system and biofilms were allowed to grow on the exposed surface. The plates were retrieved at intervals in time and their surfaces mapped using close range photogrammetry. For a fine grit surface (0.5–4 mm particles), diatom-dominated biofilms initially grew between the roughness elements; they subsequently developed as a mat to create a physically smoother outer surface than the underlying rough surface. For a coarse grit surface (2–4 mm), biofilms colonized faster; in one instance, larger clumps of biofilm were observed as transverse ripples across the plate.  相似文献   

3.
Nano-engineered superhydrophobic surfaces have been investigated for potential fouling resistance properties. Integrating hydrophobic materials with nanoscale roughness generates surfaces with superhydrophobicity that have water contact angles (θ) >150° and concomitant low hysteresis (<10°). Three superhydrophobic coatings (SHCs) differing in their chemical composition and architecture were tested against major fouling species (Amphora sp., Ulva rigida, Polysiphonia sphaerocarpa, Bugula neritina, Amphibalanus amphitrite) in settlement assays. The SHC which had nanoscale roughness alone (SHC 3) deterred the settlement of all the tested fouling organisms, compared to selective settlement on the SHCs with nano- and micro-scale architectures. The presence of air incursions or nanobubbles at the interface of the SHCs when immersed was characterized using small angle X-ray scattering, a technique sensitive to local changes in electron density contrast resulting from partial or complete wetting of a rough interface. The coating with broad spectrum antifouling properties (SHC 3) had a noticeably larger amount of unwetted interface when immersed, likely due to the comparatively high work of adhesion (60.77 mJ m?2 for SHC 3 compared to 5.78 mJ m?2 for the other two SHCs) required for creating solid/liquid interface from the solid/vapour interface. This is the first example of a non-toxic, fouling resistant surface against a broad spectrum of fouling organisms ranging from plant cells and non-motile spores, to complex invertebrate larvae with highly selective sensory mechanisms. The only physical property differentiating the immersed surfaces is the nano-architectured roughness which supports longer standing air incursions providing a novel non-toxic broad spectrum mechanism for the prevention of biofouling.  相似文献   

4.
Vessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings. Areas of hull that escape AF treatment (through limited application or damage) constitute key areas that may be expected to receive high levels of fouling. The investigation focused on whether small-scale (mm2 to cm2) areas of unprotected surface or experimental ‘scrapes’ provided sufficient area for the formation of fouling assemblages within otherwise undamaged AF surfaces. Recruitment of fouling taxa such as algae, spirorbids and hydroids was recorded on scrapes as narrow as 0.5 cm wide. The abundance and species richness of fouling assemblages developing on scrapes ≥1 cm often equalled or surpassed levels observed in reference assemblages totally unprotected by AF coatings. Experiments were conducted at three sites within the highly protected and isolated marine park surrounding Lady Elliott Island at the southernmost tip of the Great Barrier Reef, Australia. Several NIS were recorded on scrapes of AF coated surfaces at this location, with 1-cm scrapes showing the greatest species richness and abundance of NIS relative to all other treatments (including controls) at two of the three sites investigated. Slight disruptions to newly antifouled surfaces may be all that is necessary for the establishment of fouling organisms and the translocation of a wide range of invasive taxa to otherwise highly protected marine areas.  相似文献   

5.
A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7–9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.  相似文献   

6.
Fouling of ships is an important historical and enduring transfer mechanism of marine nonindigenous species (NIS). Although containerships have risen to the forefront of global maritime shipping since the 1950s, few studies have directly sampled fouling communities on their submerged surfaces, and little is known about differences in the fouling characteristics among commercial ship types. Twenty-two in-service containerships at the Port of Oakland (San Francisco Bay, California) were sampled to test the hypothesis that the extent and taxonomic richness of fouling would be low on this type of ship, resulting from relatively fast speeds and short port durations. The data showed that the extent of macroorganisms (invertebrates and algae) was indeed low, especially across the large surface areas of the hull. Less than 1% of the exposed hull was colonized for all apart from one vessel. These ships had submerged surface areas of >7000 m2, and fouling coverage on this area was estimated to be <l7 m2 per vessel, with zero biota detected on the hulls of many vessels. The outlying smaller vessel (4465 m2) had an estimated coverage of 90% on the hull and also differed substantially from the other ships in terms of its recent voyage history, shorter voyage range and slower speeds. Despite the low extent of fouling, taxonomic richness was high among vessels. Consistent with recent studies, a wide range of organisms were concentrated at more protected and heterogeneous (non-hull) niche areas, including rudders, stern tubes and intake gratings. Green algae and barnacles were most frequently sampled among vessels, but hydroids, bryozoans, bivalves and ascidians were also recorded. One vessel had 20 different species in its fouling assemblage, including non-native species (already established in San Francisco Bay) and mobile species that were not detected in visual surveys. In contrast to other studies, dry dock block areas did not support many organisms, despite little antifouling deterrence in some cases. Comparisons with previous studies suggest that the accumulation of fouling on containerships may be lower than on other ship types (eg bulkers and general cargo vessels), but more data are needed to determine the hierarchy of factors contributing to differences in the extent of macrofouling and non-native species vector risks within the commercial fleet.  相似文献   

7.
Investigations of the surface chemistry of marine organisms are essential to understand their chemically mediated interactions with fouling organisms. In this context, the concentration of natural products in the immediate vicinity of algal surfaces, as well as their biological activity, are of particular importance. However, due to lack of appropriate methods, the distribution of compounds within the chemical sphere around marine algae is unknown. This study demonstrates the suitability of confocal resonance Raman microspectroscopy for the determination of metabolites around algal surfaces with a micrometer resolution. The spatial distribution of carotenoids in the diffusion boundary layer of the brown alga Fucus vesiculosus and the green alga Ulva sp. was determined using the disruption-free optical method. A gradient of carotenoids was determined within 0 to 150 μm from the surface of thealgae, thereby demonstrating the release of the non-polar metabolites involved in antifouling processes. Thedifferences in the carotenoid composition of the brown and green algae were reflected in the spectra. Resonance Raman microspectroscopy also allowed visualization of the lateral distribution of fucoxanthin on the algal surface and localization of concentration maxima within a 50 × 50 μm2 area. The results from this work show clearly that established dipping techniques suitable for the extraction of the diffusion boundary layer of macroalgae only provide an average of the local strongly variable concentrations of metabolites on algal surfaces.  相似文献   

8.
The antifouling efficacy of a series of 18 textured (0.2–1000 μm) and non-textured (0 μm) polydimethylsiloxane surfaces with the profiles of round- and square-wave linear grating was tested by recording the settlement of fouling organisms in the laboratory and in the field by monitoring the recruitment of a multi-species fouling community. In laboratory assays, the diatoms Nitzschia closterium and Amphora sp. were deterred by all surface topographies regardless of texture type. Settlement of propagules of Ulva sp. was lower on texture sizes less than the propagule size, and settlement of larvae of Saccostrea glomerata and Bugula neritina was lower on texture sizes closest to, but less than, the sizes of larvae. After a six month field trial, all textured surfaces lost their deterrent effect; however, the foul-release capabilities of textures were still present. High initial attachment was correlated with most fouling remaining after removal trials, indicating that fouling organisms recruited in higher numbers to surfaces upon which they attached most strongly.  相似文献   

9.
In this study, a simple and rapid methodology based on the hot-plate digestion method using dilute nitric acid solution was used to extract trace metals (such as As, Cd, Cr, Cu, Pb, Fe, and Zn) from freshwater sediments. The concentrations of the elements were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The factors (temperature, nitric acid concentration, and volume) affecting the digestion method were optimized using one-factor-at-a-time (OFAT) or univariate methodology, and the optimization process was carried out using freshwater sediment certified reference material (CRM015). The optimal conditions for temperature, nitric acid concentration, and time in the method were 180°C, 10 mL of 5 mol L?1 HNO3, and 45 min, respectively. Under optimum conditions, the limit of detection (LOD) ranged between 0.02 and 0.08 µg L?1 and the limit of quantification (LOQ) ranged from 0.07 and 0.27 µg L?1. In addition, the method detection limits (MDLs) and method quantification limits (MQLs) were 0.10–0.17 and 0.30?0.57 µg g?1, respectively. The overall accuracy of the method determined by recovery of the trace elements in the CRMs ranged from 98 to 111% with the precision ranging from 1.4 to 5.8%. The method was successfully applied for the determination of target metals from real freshwater sediment samples.  相似文献   

10.
Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.  相似文献   

11.
Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, γC and surface energies, γS, and duplicated the ‘Baier curve’. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with γC and increased wettability as measured by the static water contact angle, θWs, of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R 2 = 0.74 for percentage removal as a function of θWs and R 2 = 0.69 for percentage removal as a function of γC). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with θWs (R 2 = 0.84) and γC (R 2 = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes).  相似文献   

12.
In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m?3 day?1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.  相似文献   

13.
Whole cell, strength of adhesion assays of three different isolates of the fouling diatom Amphora coffeaeformis were compared using a hydrophilic surface viz. acid washed glass (AWG), and a hydrophobic surface viz. a self assembled monolayer (SAM) of undecanethiol (UDT). Assays were performed using a newly designed turbulent flow channel that permits direct observation and recording of cell populations on a test surface. Exposure to continuous shear stress over 3 h revealed that the more motile isolate, WIL2, adhered much more strongly to both test surfaces compared to the other two strains. When the response of the isolates to shear stress after 3 h was compared, there was no significant difference in the percentage of cells removed, irrespective of surface wettability. Cells of the three isolates of A. coffeaeformis varied significantly in their response to different surfaces during initial adhesion, indicating the presence of a wide range of ‘physiological races’ within this species.  相似文献   

14.
The results of in-water vortex-induced vibration (VIV) experiments on circular cylinders artificially covered with barnacles are reported. The paper focusses on the effects of the partial coverage and the shape of the fouling elements. An artificial barnacle typical of marine fouling was synthesised using 3-D printing. Coverage ratios of 80, 50 and 30% were examined and the results compared with those from a smooth cylinder. The Reynolds number ranged from 5.8 × 103 to 6.6 × 104. The experimental results show that the fouling reduced the peak VIV amplitude, narrowed the synchronisation region and lowered the hydrodynamic force coefficients such as the coefficients of lift force RMS, the mean drag force and the fluctuating drag force RMS. The shape of the artificial barnacles had little effect on the maximum oscillation amplitude. The coverage ratio appeared to have a lower impact on the lift force than those on the amplitude and the frequency responses.  相似文献   

15.
Bacterial adhesion is strongly dependent on the physico-chemical properties of materials and plays a fundamental role in the development of a growing biofilm. Selected materials were characterized with respect to their physico-chemical surface properties. The different materials, glass and several polymer foils, showed a stepwise range of surface tensions (γs) between 10.3 and 44.7 mN m?1. Measured zeta potential values were in the range between ?74.8 and ?28.3 mV. The initial bacterial adhesion parameter q max was found to vary between 6.6 × 106 and 28.1 × 106 cm?2. By correlation of the initial adhesions kinetic parameters with the surface tension data, the optimal conditions for the immobilization of Pseudomonas putida mt2 were found to be at a surface tension of 24.7 mN m?1. Both higher and lower surface tensions lead to a smaller number of adherent cells per unit surface area. Higher energy surfaces, commonly termed hydrophilic, could constrain bacterial adhesion because of their more highly ordered water structure (exclusion zone) close to the surface. At low energy surfaces, commonly referred to as hydrophobic, cell adhesion is inhibited due to a thin, less dense zone (depletion layer or clathrate structure) close to the surface. Correlation of q max with zeta potential results in a linear relationship. Since P. putida carries weak negative charges, a measurable repulsive effect can be assumed on negative surfaces.  相似文献   

16.
In the tank bioleaching process, maximising solid loading and mineral availability, the latter through decreasing particle size, are key to maximising metal extraction. In this study, the effect of particle size distribution on bioleaching performance and microbial growth was studied through applying knowledge based on medical geology research to understand the adverse effects of suspended fine pyrite particles. Small-scale leaching studies, using pyrite concentrate fractions (106–75, 75–25, ?25 μm fines), were used to confirm decreasing performance with decreasing particle size (D 50 <40 μm). Under equivalent experimental conditions, the generation of the reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals from pyrite was illustrated. ROS generation measured from the different pyrite fractions was found to increase with increasing pyrite surface area loading (1.79–74.01 m2 L?1) and Fe2+ concentration (0.1–2.8 g?L?1) in solution. The highest concentration of ROS was measured from the finest fraction of pyrite (0.85 mM) and from the largest concentration of Fe2+ (0.78 mM). No ROS was detected from solutions containing only Fe3+ under the same conditions tested. The potential of ROS to inhibit microbial performance under bioleaching conditions was demonstrated. Pyrite-free Sulfolobus metallicus cultures challenged with hydrogen peroxide (0.5–2.5 mM) showed significant decrease in both cell growth and Fe2+ oxidation rates within the concentration range 1.5–2.5 mM. In combination, the results from this study suggest that conditions of large pyrite surface area loading, coupled with high concentrations of dissolved Fe2+, can lead to the generation of ROS, resulting in oxidative stress of the microorganisms.  相似文献   

17.
Abstract

This paper explores diatom attachment to a range of laser etched polyimide surfaces to directly test ‘attachment point theory’. Static bioassays were conducted on microtextured polyimide surfaces using four diatom species, Fallacia carpentariae, Nitzschia cf. paleacea, Amphora sp. and Navicula jeffreyi with cell sizes ranging from 1 – 14 μm. The microtextured polyimides were modelled from natural fouling resistant bivalve surfaces and had wavelengths above, below and at the same scale as the diatom cell sizes. Diatoms attached in significantly higher numbers to treatments where the numbers of attachment points was highest. The lowest diatom attachment occurred where cells were slightly larger than the microtexture wavelength, resulting in only two theoretical points of attachment. The results support attachment point theory and highlight the need to address larval/cell size in relation to the number of attachment points on a surface. Further studies examining a range of microtexture scales are needed to apply attachment point theory to a suite of fouling organisms and to develop structured surfaces to control the attachment and development of fouling communities.  相似文献   

18.
Biofilm development on mineral surfaces and related changes in surface reactivity were studied using batch and flow through experiments. An artificial groundwater was used as the primary nutrient medium, Pseudomonas aeruginosa (PAO1) was the model microbial organism and ‘mineral’ surfaces were kept as simple as possible by using glass or a polished quartz tile. Experiments were also completed with very low concentrations (100 mg l?1) of iron, Fe2+ , in the solution. In situ confocal laser scanning microscopy of developing colonies during the live growth phase, and of thick, mature biofilms, revealed only sporadic coverage of biofilm cells and associated polymers at the ‘mineral–microbe interface’. Imaging and analysis of biofilm-conditioned surfaces doped with Fe2+ -rich solutions allowed the locus and form of Fe-rich mineral precipitation to be determined and show that biological surface components can cause mineral precipitation from dilute dissolved species which might otherwise remain in solution.  相似文献   

19.
In this study, the synthesis of SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %) has been investigated under acidic conditions by using P123 as a template via the direct method. The nanocomposites of SBA-15 were synthesized by the same method and by the addition of silver salt. Finally, the nanocomposite materials were examined for the removal of mercury ions from wastewater as an adsorbent by the reverse titration method. Characterization was carried out through x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption-desorption (Brunauer–Emmett–Teller). XRD spectra confirmed the presence of silver nanoparticles within the amorphous silica matrix of SBA-15. The Barrett–Joyner–Halenda analysis showed that SBA-15 and SBA-15/Ag have a narrow pore size distribution. SEM images demonstrated that the morphology of the matrix of SBA-15 is in spherical state. Furthermore, wavelength dispersive x-ray spectroscopy identified the presence and distribution of silver nanoparticles inside the pore channels and outside of them. Typical TEM images of SBA-15 and SBA-15/Ag (5 wt.%) indicated a regular hexagonal pore structure with long-range order and long channels. In SBA-15/Ag (5 wt.%) sample, the nanoparticles of silver was found into the pores and outside of them. The removal of mercury ions from wastewater using mesoporous silica nanocomposite containing silver nanoparticles was studied by the reverse titration analysis. The best capacity of adsorption of mercury ions from wastewater was obtained for SBA-15/Ag (5 wt.%) sample, which was equal to 42.26 mg/g in 20 min at pH of 7. The Freundlich model was used to explain the adsorption characteristics for the heterogeneous surface, and \( {K}_{\mathrm{f}} \) (adsorption capacity) and n (adsorption intensity) were determined for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %). The value of R 2 was about 0.99, 0.99, 0.98, and 0.98 and K f was about 42, 48, 58, and 58 mg/g for SBA-15/Ag, SBA-15/Ag (2.5 %), SBA-15/Ag (5 %), and SBA-15/Ag (10 %), respectively. Furthermore, the values of n >1 show a favorable adsorption process for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials. Moreover, the Langmuir isotherm model evaluation showed that the correlation coefficients for all concentrations were R 2 >0.99, indicating that Hg (II) ions were adsorbed on the surface of SBA-15/Ag via chemical and physical interaction. Additionally, the analytic hierarchy process (AHP) and Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) methods that depend on the criteria of the surface area, amount of adsorbent, pore volume, and cost of synthesis were used. The evaluation of results showed that the best sample was SBA-15/Ag (5 wt.%). Furthermore, the research work highlighted the antibacterial nanocomposite with suitable adsorption of Hg (II) ions from water solutions and supported its potential for environmental applications. This nanocomposite can be used in the absorption domain of Hg (II) ions from water solutions.  相似文献   

20.
Grooming is a proactive method to keep a ship’s hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号