首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid (GC) metabolism by the 11beta-hydroxysteroid dehydrogenase (HSD) system is an important prereceptor regulator of GC action. The HSD enzymes catalyze the interconversion of the endogenous, biologically active GC cortisol and its inactive 11-dehydro metabolite cortisone. The role of the HSD enzymes in the metabolism of synthetic GCs, such as dexamethasone (Dex), is more complex. The human lung is a classic GC-sensitive organ; however, the roles of the HSD enzymes (HSD1 and HSD2) in the human lung are poorly understood. In the present study, we examined the expression of the HSD enzymes in human adult and fetal lung tissues and the human lung epithelial cell line NCI-H441. We observed that human adult and fetal lung tissues, as well as H441 cells, express HSD2 protein and that it is upregulated by Dex (10(-7) M). By contrast, HSD1 protein was undetectable. We also show that the Dex-mediated regulation of surfactant protein A is attenuated by inhibition of HSD2 activity. Furthermore, we demonstrate that unlike the inactive, 11-dehydro metabolite of cortisol (i.e., cortisone), the 11-dehydro metabolite of Dex, 11-dehydro-Dex, competes for binding to the GC receptor (GR) in human lung epithelial cells and retains GR agonist activity. Together, these data suggest that differences exist in the biological activities of the metabolites of cortisol and Dex.  相似文献   

2.
Previous studies in sheep have provided evidence for a separate "hypertensinogenic" class of adrenocortical steroid activity which is not simply related to their classical mineralocorticoid (MC) and/or glucocorticoid (GC) actions. This study investigated the structure-activity relationships of the effects of structural analogues of prednisolone on mean arterial pressure (MAP), and MC and GC actions in sheep. Infusions of these synthetic GC at 0.6 and 24 mg/day produced variable pressor effects which were dissociated from their MC and GC actions. In other experiments, the minimum adrenocortical steroid requirement to reproduce the onset of ACTH-dependent hypertension was determined. Infusion of cortisol, aldosterone, 17 alpha-hydroxy progesterone and 17 alpha,20 alpha-dihydroxy-4-pregnene-3-one was found to be sufficient to reproduce the hypertensive response to ACTH administration in sheep. A subsequent experiment showed that substitution of cortisol by the more potent synthetic GC, prednisolone had no effect on MAP. Therefore, cortisol appears to exert an essential action in ACTH hypertension which is not dependent on its GC activity. Other studies have found that prednisolone (100 mg/day) antagonized 9 alpha-fluoro-prednisolone (0.6 mg/day) induced hypertension but not its MC effects. The effect of progesterone (500 mg/day) and the progesterone analogues, norethisterone, medroxy-progesterone and 16 alpha-methyl progesterone on ACTH (5 micrograms/kg per day) hypertension was investigated. Progesterone completely blocked the hypertension and MC effects of ACTH infusion, while medroxy-progesterone partially blocked the increase in MAP. These data support our concept of a "hypertensinogenic" class of steroid activity.  相似文献   

3.
An 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1) produces glucocorticoid (GC) from 11‐keto metabolite, and its modulation has been suggested as a novel approach to treat metabolic diseases. In contrast, type 2 isozyme 11β‐HSD2 is involved in the inactivation of glucocorticoids (GCs), protecting the non‐selective mineralocorticoid receptor (MR) from GCs in kidney. Therefore, when 11β‐HSD1 inhibitors are pursued to treat the metabolic syndrome, preferential selectivity of inhibitors for type 1 over type 2 isozyme is rather important than inhibitory potency. Primarily, to search for cell lines with 11β‐HSD2 activity, we investigated the expression profiles of enzymes or receptors relevant to GC metabolism in breast, colon, and bone‐derived cell lines. We demonstrated that MCF‐7 cells had high expression for 11β‐HSD2, but not for 11β‐HSD1 with its cognate receptor. Next, for the determination of enzyme activity indirectly, we adopted homogeneous time resolved fluorescence (HTRF) cortisol assay. Obviously, the feasibility of HTRF to cellular 11β‐HSD2 was corroborated by constructing inhibitory response to an 11b‐HSD2 inhibitor glycyrrhetinic acid (GA). Taken together, MCF‐7 that overexpresses type 2 but not type 1 enzyme is chosen for cellular 11β‐HSD2 assay, and our results show that a nonradioactive HTRF assay is applicable for type 2 as well as type 1 isozyme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Glucocorticoid (GC) acts as a modulator of physiological functions in several organs. In the present study, we examined whether GC suppresses luteolysis in bovine corpus luteum (CL). Cortisol (an active GC) reduced the mRNA expression of caspase 8 (CASP8) and caspase 3 (CASP3) and reduced the enzymatic activity of CASP3 and cell death induced by tumor necrosis factor (TNF) and interferon gamma (IFNG) in cultured bovine luteal cells. mRNAs and proteins of GC receptor (NR3C1), 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1), and HSD11B2 were expressed in CL throughout the estrous cycle. Moreover, the protein expression and the enzymatic activity of HSD11B1 were high at the early and the midluteal stages compared to the regressed luteal stage. These results suggest that cortisol suppresses TNF-IFNG-induced apoptosis in vitro by reducing apoptosis signals via CASP8 and CASP3 in bovine CL and that the local increase in cortisol production resulting from increased HSD11B1 at the early and midluteal stages helps to maintain CL function by suppressing apoptosis of luteal cells.  相似文献   

5.
The role of arterial receptors to mineralocorticoids (MC) and glucocorticoids (GC) in the induction by MC and GC of changes in transmembrane transport of sodium (Na+) and water was investigated. Implantation of Silastic rubber strips impregnated with 11-desoxycorticosterone acetate (DOCA) in rabbits was followed by a marked increase in vascular smooth muscle cell membrane permeability to Na+ and hypertension. Both of these effects were preventable with progesterone, an anti-MC at the steroid-receptor level, implanted in relative excess simultaneously with DOCA, in approximately 50% of the implanted animals. The other 50% were hydroxylating in vivo progesterone to 11-desoxycorticosterone (DOC) efficiently enough not to yield the necessary ratio of progesterone to DOC for the sufficient MC receptor blockage. In vascular smooth muscle cell culture, grown in the presence of steroids, GC but not MC increased intracellular water space. This increase was preventable by a potent synthetic anti-GC,RU 38486, a steroid with high affinity for GC receptors, added to culture medium along with GC. These results provide evidence that both the in vivo effect of MC on Na+ permeability and the induction of hypertension, and the in vitro effect of GC on water transport in cultured vascular smooth muscle cells are elicited through the receptor-mediated molecular mechanism(s) for action of these steroids in the arterial wall.  相似文献   

6.
7.
Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells.  相似文献   

8.
9.
The bioavailability of circulating and/or endogenous hydrocortisone (cortisol) in epidermal cells is a key determinant in inflammatory disease and chronic wounds. It is not known, however, whether epidermal cells can regulate tissue cortisol and whether they are capable of producing endogenous glucocorticoids. In the present study, we show by microarray analysis that epidermal cells express mRNAs to all the major enzymes involved in the metabolic chain from cholesterol to cortisol, including cytocrome P450 chain, 11β-hydroxysteroid dehydrogenases (HSD11Bs), adrenocorticotropic hormone (ACTH) receptor (MC2R), and glucocorticoid receptor. The two enzymes mediating activation/deactivation of cortisone to cortisol, namely HSD11B1 and HSD11B2, were expressed at the protein level in cultured keratinocytes as well as human skin samples, as shown by Western blotting and immunohistochemistry, respectively. In functional assays, we show that keratinocytes are not only able to activate cortisone to cortisol in a HSD11B-dependent manner but also silencing of either HSD11B1 or HSD11B2 specifically modulates the bioavailability of the inactive glucocorticoid and the active steroid, respectively. A further key observation was that keratinocytes responded to stimulation with ACTH by a significant increase in the de novo synthesis of cortisol. Taken together, we provide evidence for a novel non-adrenal steroideal system in human keratinocytes.  相似文献   

10.

Background

Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC) in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR) signaling by increased expression of either GR or the GC-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11βHSD1) in muscle.

Methods

There were 82 participants; group 1 comprised 33 older men (mean age 70.2years, SD 4.4) and 19 younger men (22.2years, 1.7) and group 2 comprised 16 older men (79.1years, 3.4) and 14 older women (80.1years, 3.7). We measured muscle strength, mid-thigh cross-sectional area, fasting morning plasma cortisol, quadriceps muscle GR and 11βHSD1 mRNA, and urinary glucocorticoid metabolites. Data were analysed using multiple linear regression adjusting for age, gender and body size.

Results

Muscle strength and size were not associated with plasma cortisol, total urinary glucocorticoids or the ratio of urinary 5β-tetrahydrocortisol +5α-tetrahydrocortisol to tetrahydrocortisone (an index of systemic 11βHSD activity). Muscle strength was associated with 11βHSD1 mRNA levels (β -0.35, p = 0.04), but GR mRNA levels were not significantly associated with muscle strength or size.

Conclusion

Although circulating levels of GC are not associated with muscle strength or size in either gender, increased cortisol generation within muscle by 11βHSD1 may contribute to loss of muscle strength with age, a key component of sarcopenia. Inhibition of 11βHSD1 may have therapeutic potential in sarcopenia.  相似文献   

11.
12.
13.
Placental hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2) plays an important role in pregnancy maintenance and fetal maturation. In the event of intrauterine infection, lipoxygenase (LOX) metabolites are produced in the placenta and contribute to preterm labor and adverse fetal outcomes. On the other hand, LOX metabolites are involved in production of progesterone, which is required for pregnancy maintenance. In this study, we evaluated the interaction between the LOX pathway, progesterone, and HSD11B2. Specifically, we hypothesized that LOX metabolites would alter HSD11B2 and this effect would be mediated by progesterone. We cultured human term placental trophoblasts in the presence and absence of the LOX inhibitors Nordihydroguaiaretic acid (NDGA), AA861, and Baicalein; the LOX metabolites Leukotriene B(4) and 12(S)-Hydroxyeicosatetraenoate (12-HETE); and progesterone and progesterone receptor antagonist RU486. By radiometric conversion assay, real-time quantitative PCR, Western blot analysis, and ELISA, we examined HSD11B2 enzyme activity, HSD11B2 mRNA and HSD11B2 protein expression, and progesterone output. LOX metabolites down-regulated HSD11B2 activity and HSD11B2 expression. LOX inhibitors up-regulated HSD11B2 activity and HSD11B2 and HSD11B2 expression, and these effects were attenuated by addition of LOX metabolites. Net progesterone output was increased by LOX metabolites and decreased by LOX inhibitors. Progesterone down-regulated HSD11B2 activity and HSD11B2 and HSD11B2 expression, and these effects were blocked by RU486. Furthermore, the suppressive effect of 12-HETE on HSD11B2 activity was also reversed by RU486. We conclude that HSD11B2 in human placental trophoblasts is decreased by progesterone and increased by inhibition of endogenous LOX metabolites, and that a component of the effect of LOX metabolites on HSD11B2 is mediated by their stimulation of endogenous progesterone output.  相似文献   

14.
Cortisol and aldosterone have the same in vitro affinity for the mineralocorticoid receptor (MR), although in vivo only aldosterone acts as a physiologic agonist of the MR, despite circulating levels of cortisol in humans and corticosterone in rodents being three orders of magnitude higher than aldosterone levels. In mineralocorticoid target organs the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) inactivates 11-hydroxy steroids, to their inactive keto-forms, thus protecting the nonselective MR from activation by glucocorticoids. The gene is highly expressed in all sodium-transporting epithelia, particularly in the kidney and colon, but also in human placenta and vascular wall. Mutations in the HSD11B2 gene cause a rare monogenic juvenile hypertensive syndrome called apparent mineralocorticoid excess (AME). In AME, compromised 11βHSD2 enzyme activity results in activation of the MR by cortisol, causing sodium retention, hypokalaemia, and salt-dependent hypertension. Whereas mutations or inhibition of 11βHSD2 by licorice have been clearly shown to produce a congenital or acquired syndrome of mineralocorticoid excess, the questions remaining are the extent to which subtle abnormalities in MR/11βHSD2 mechanisms may contribute to essential hypertension. Studies in patients with essential hypertension showed a prolonged half-life of cortisol and an increased ratio of urinary cortisol to cortisone metabolites, suggesting a deficient 11βHSD2 activity. These abnormalities may be genetically determined, as suggested by the association of a microsatellite flanking the HSD11B2 gene with hypertension in black patients with end-stage kidney disease and with salt sensitivity of blood pressure in healthy subjects. These findings indicate that variants of the HSD11B2 gene may contribute to the enhanced blood pressure response to salt and possibly to hypertension in humans.  相似文献   

15.
11β-hydroxysteroid dehydrogenase (HSD11B) catalyzes the interconversion between active and inactive glucocorticoid, and is known to exist as two distinct isozymes: HSD11B1 and HSD11B2. A third HSD11B isozyme, HSD11B1L (SCDR10b), has recently been identified. Human HSD11B1L, which was characterized as a unidirectional NADP+-dependent cortisol dehydrogenase, appears to be specifically expressed in the brain. We previously reported that HSD11B1 and abundant HSD11B2 isozymes are expressed in neonatal pig testis and the Km for cortisol of NADP+-dependent dehydrogenase activity of testicular microsomes obviously differs from the same activity catalyzed by HSD11B1 from pig liver microsomes. Therefore, we hypothesized that the neonatal pig testis also expresses the third type of HSD11B isozyme, and we herein examined further evidence regarding the expression of HSD11B1L. (1) The inhibitory effects of gossypol and glycyrrhetinic acid on pig testicular microsomal NADP+-dependent cortisol dehydrogenase activity was clearly different from that of pig liver microsomes. (2) A highly conserved human HSD11B1L sequence was observed by RT-PCR in a pig testicular cDNA library. (3) mRNA, which contains the amplified sequence, was evaluated by real-time PCR and was most strongly expressed in pig brain, and at almost the same levels in the kidney as in the testis, but at lower levels in the liver. Based on these results, neonatal pig testis appears to express glycyrrhetinic acid-resistant HSD11B1L as a third HSD11B isozyme, and it may play a physiologically important role in cooperation with the abundantly expressed HSD11B2 isozyme in order to prevent Leydig cell apoptosis or GC-mediated suppression of testosterone production induced by high concentrations of activated GC in neonatal pig testis.  相似文献   

16.
Park KK  Ko DH  You Z  Heiman AS  Lee HJ 《Steroids》2006,71(1):83-89
In continuing efforts to develop potent anti-inflammatory steroids without systemic adverse effects, methyl 9alpha-fluoro-11beta,17alpha,21-trihydroxy-3,20-dioxo-pregna-1,4-diene-16alpha-carboxylate (FP16CM) and its 16-alkoxycarbonyl derivatives (FP16CE, FP16CP and FP16CB) were synthesized based on the antedrug concept. The steroids were evaluated for their pharmacological activities and adverse systemic effects. All steroidal antedrugs showed both binding affinity to the glucocorticoid receptor in liver cytosol and inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cell. These compounds also inhibited croton-oil-induced ear edema and showed no systemic effects such as thymus atrophy and suppression of corticosterone level after 5-day treatment. Among those compounds tested, FP16CM showed the highest activities in receptor binding, NO inhibition and ear edema, these activities were comparable to those of prednisolone. Hydrolysis study in plasma showed that FP16CB was hydrolyzed rapidly, with the half-live (T1/2) of 3.2 min and the half-lives of other compounds were between 16.9 and 29.4 min. These results support the antedrug concept, of which the decrease in systemic adverse effects is attributed to fast hydrolysis to inactive metabolite in the systemic circulation.  相似文献   

17.
The aim of this study was to outline the consequences of a hypertonic saline-dextran-40 (HSD) infusion-induced peripheral flow stimulus on the ventricular function in closed-chest, pentobarbital-anesthetized dogs. We hypothesized that HSD-induced elevation in endothelin-1 (ET-1) and nitric oxide (NO) release can have a role in myocardial contractile responses; and that cardiac mast cells (MC) degranulation may be involved in this process. The consequences of disodium cromoglycate (a MC stabilizer) or ETR-p1/fl peptide (an endothelin-A receptor antagonist) treatment were evaluated. A 4 ml/kg iv HSD40 infusion significantly increased cardiac index and myocardial contractility, and resulted in a decreased peripheral resistance. The postinfusion period was characterized by significant plasma NO and ET-1 elevations, these hemodynamic and biochemical changes being accompanied by a decreased myocardial ET-1 content, NO synthase activity and enhanced myocardial MC degranulation. Disodium cromoglycate treatment inhibited the HSD40-induced elevations in myocardial contractility and MC degranulation, and similar hemodynamic changes were noted after treatment with ETR-p1/fl peptide, together with a normalized myocardial myocardial ET-1 content, NO synthesis and a significant reduction in MC degranulation. These results indicate that peripheral NO and ET-1 release modulates the cardiac contractility through myocardial ET-A receptor activation and MC degranulation.  相似文献   

18.
Norethisterone (NET) is a 19-nortestosterone derivative with progestagenic and some androgenic activity, which was used in the first generation of contraceptives. NET was succeeded by levonorgestrel (LNG) and later on by desogestrel (DSG) and gestodene (GSD). Although these latter two progestins had increased potency, there was still androgenicity with gestodene and to a lesser extent with desogestrel. New progestins were synthesized in order to further enhance progestagenic and to reduce androgenic activity. Four different chemical moieties were introduced in position 17 of 19-nortestosterone, viz. 17alpha-ethynyl, five- and six-membered spiromethylene ethers, and a six-membered-spiromethylene lactone. In combination with these structures seven different substituents were added at position 11, i.e. methylene, methyl, ethyl, ethenyl, ethynyl, 2-propenyl and 1-propynyl. All substituents except for methylene occupied the 11beta-position. All these 32 compounds were synthesized and analysed in vitro and in vivo against etonogestrel (ETG, 3-keto-desogestrel), the biologically active metabolite of desogestrel. Their relative binding potency to progesterone (PR), androgen (AR) and estrogen (ER) receptors were determined in cell lysates of human breast tumor MCF-7 cells and to glucocorticoid (GR) receptors in that of human leukemic IM-9 cells. Moreover, their relative agonistic activities were assessed in Chinese hamster ovary cell-based transactivation assays. All in vivo activities were determined in McPhail (progestagenic), ovulation inhibition (progestagenic and estrogenic), Hershberger (androgenic), hormone screening (glucocorticoid and estrogen) and Allen-Doisy (estrogenic) tests after oral and for the McPhail test also after subcutaneous administration. The progestagenic binding and transactivation potencies of all compounds in the three 17-spiro series were higher than those of the corresponding analogues in the 17alpha-ethynyl series. None of the compounds showed estrogenic or clear androgenic binding and transactivation potential except for a six-membered-spiromethylene lactone with a propynyl group. This compound showed strong androgenic binding. The glucocorticoid binding and transactivation were very low for the compounds with the 17alpha-ethynyl and the five-membered-spiromethylene ether groups, whereas both six-membered-spiro series showed, clearly with methyl and ethynyl substituents, and less pronounced with methylene and ethenyl, higher binding and transactivation values. For the 17alpha-ethynyl series, the McPhail test showed high potencies with methylene, methyl and ethenyl substituents after oral treatment or with propenyl after subcutaneous administration. The introduction of the spiro substituents in position 17 led to high potencies for other 11-substituents as well. Besides methyl, also ethyl, ethynyl and propynyl were potent substituents. With ovulation inhibition tests, the ethyl, ethenyl and ethynyl substituents were the more potent compounds in all four series. However, compounds with methyl or ethynyl additions appeared to be glucocorticoidal in the hormone screening test irrespective of the 17-substituent, while with the three spiro series even methylene and ethenyl groups became active. Androgenicity was only observed at dose levels at or above 5 mg/kg, which is 2.5-fold weaker than ETG. Moreover, estrogenicity appeared negligible with the three spiro series, while with the 17alpha-ethynyl series methyl, ethyl, ethenyl and ethynyl substituents, a very high estrogenic potential was assessed. Based on the high efficacy and low side-effects, the following compounds show a high selectivity: 17alpha-ethynyl with ethyl, ethenyl and 2-propenyl substituents, six-membered spiromethylene ether with ethyl and six-membered-spiromethylene lactone with ethyl, 2-propenyl or 1-propynyl substituents. (ABSTRACT TRUNCATED)  相似文献   

19.
20.
Glucocorticoids (GCs) are the mainstay of asthma therapy; however, major side effects limit their therapeutic use. GCs influence the expression of genes either by transactivation or transrepression. The antiinflammatory effects of steroids are thought to be due to transrepression and the side effects, transactivation. Recently, a compound, RU 24858, has been identified that demonstrated dissociation between transactivation and transrepression in vitro. RU 24858 exerts strong AP-1 inhibition (transrepression), but little or no transactivation. We investigated whether this improved in vitro profile results in the maintenance of antiinflammatory activity (evaluated in the Sephadex model of lung edema) with reduced systemic toxicity (evaluated by loss in body weight, thymus involution, and bone turnover) compared with standard GCs. RU 24858 exhibits comparable antiinflammatory activity to the standard steroid, budesonide. However, the systemic changes observed indicate that transactivation events do occur with this GC with similar potency to the standard steroids. In addition, the GCs profiled showed no differentiation on quantitative osteopenia of the femur. These results suggest that in vitro separation of transrepression from transactivation activity does not translate to an increased therapeutic ratio for GCs in vivo or that adverse effects are a consequence of transrepression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号