首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of mitochondrial Ca(2+) clearance in stimulated cells, changes in free Ca(2+) concentration in the cytosol, [Ca(2+)](c) and that in mitochondria, [Ca(2+)](m) along with secretory responses were observed using chromaffin cells co-loaded with Fura-2 and Rhod-2 in the perfused rat adrenal medulla. When the cells were stimulated with 40 mM K(+) in the perfusate, the duration of [Ca(2+)](m) response markedly increased with prolongation of the stimulation period, exhibiting a mean half-decay time of 21 min with 30s stimulation, whereas its amplitude was not altered with stimulations of 10-30s. A computer simulation analysis showed that such a mode of [Ca(2+)](m) response can be produced if excess Ca(2+) taken up by mitochondria precipitates as calcium phosphate (Pi) salt. In the presence of 5 microM rotenone plus 10 microM oligomycin, a decrease in the duration of [Ca(2+)](m) response and a slight but significant increase (24%) in the secretory response to 30s stimulation with 40 mM K(+) were observed. Simulation analyses suggested that this effect of rotenone may be due to reduction in mitochondrial Ca(2+) uptake induced by rotenone-elicited partial depolarization of the mitochondrial membrane potential. In chromaffin cells transsynaptically stimulated through the splanchnic nerve, the intensity of NAD(P)H autofluorescence changed with time courses similar to those of [Ca(2+)](m) responses. The temporal profiles of those two responses were prolonged in a similar manner by application of an inhibitor of mitochondrial Na(+)/Ca(2+) exchanger, CGP37157. Thus, due to the unique Ca(2+) buffering mechanism, [Ca(2+)](m) responses associated with massive mitochondrial Ca(2+) uptake may occur within a limited concentration range in which Ca(2+)-sensitive dehydrogenases are activated to control the mitochondrial redox state in stimulated chromaffin cells.  相似文献   

2.
A rise in D-glucose concentration may augment insulin release independently of changes in K(+) conductance or Ca(2+) influx in pancreatic islet cells, the insulinotropic action of the hexose remaining dependent on an increased generation of high-energy phosphates. In the present study, therefore, it was investigated to which extent the procedures currently used to assess the modalities of the secretory response to D-glucose independent of its effect on ATP-sensitive K(+) channels and Ca(2+) inflow may themselves affect the catabolism of the hexose in isolated rat pancreatic islets. A rise in the extracellular K(+) concentration from 5 to 30 or 60 mM failed to significantly affect the metabolism of D-glucose. At 90 mM K(+), however, the maximal velocity of the glycolytic flux was decreased and the apparent K(m) for D-glucose lowered, without an obvious alteration of the preferential stimulation of oxidative mitochondrial events in response to a rise in D-glucose concentration. Such a preferential stimulation was abolished, however, either by diazoxide at a low, but not high, K(+) concentration or by Ca(2+) deprivation, in the absence or presence of diazoxide, at a high K(+) concentration. It is speculated that these metabolic changes may be attributable, in part at least, to an altered activity of key cytosolic (e.g. pyruvate kinase) and mitochondrial (e.g. FAD-linked glycerophosphate dehydrogenase) enzymes.  相似文献   

3.
Warashina A 《Cell calcium》2001,29(4):239-247
The effects of wortmannin and LY294002, inhibitors of PI(3)-kinase, in secretagogue-stimulated rat adrenal chromaffin cells loaded with Calcium Green-1 were studied by simultaneously measuring changes in the fluorescence intensity of the indicator (Ca-response) and in the release of catecholamine (secretory response). Before application of these agents, the profile of the secretory response evoked by a 10-min stimulation with 30 mM K(+)] was approximated by the k th (2.6 on average) power of that of the Ca-response. Both agents dose-dependently inhibited the high-K(+)-elicited Ca-response and secretory response in a similar mode to which the k th power relation was preserved despite the occurrence of profound changes in the shapes and sizes of these two responses. The L-type Ca(2+)-channel blocker PN200-110 inhibited the high-K(+)-evoked responses in a similar fashion. Thus, it is likely that wortmannin and LY294002 inhibit high-K(+)-evoked CA secretion by inhibiting a Ca(2+)-influx through voltage-dependent Ca(2+)channels. Although regulation of L-type Ca(2+)channel activity via PI(3)-kinase has been reported in vascular myocytes, this possibility may be limited in the present case since the doses of LY294002 and wortmannin used to inhibit the secretory response are much higher than IC(50)'s for inhibition of PI(3)-kinase with these agents. Compared with the high-K(+)-elicited responses, muscarine-evoked Ca-responses and secretory responses were more strongly inhibited by wortmannin, but less affected by LY294002. The differential effects suggest that the inhibition of the muscarine-evoked secretion by these agents i s not associated with the inhibition of PI(3)-kinase.  相似文献   

4.
The data on hormonal regulation of ATP-driving ion pumps are contradictory depending on the object used: whether native cells or isolated membranes. To eliminate this contrariety, we studied the ion transporting ATPases in saponin-permeabilized cells in the presence of all endogenous regulators. In permeabilized erythrocytes we obtained the presence of Ca(2+)-dependent activation of Ca(2+)-ATPase by factor(s) not affected by calmodulin antagonist R24571. We obtained also Ca(2+)-dependent activation and inhibition of Na+,K(+)-ATPase. At a concentration of Mg(2+)-ions corresponding to the intracellular level (370 microM), the 0.5-0.7 microM Ca(2+)-activated Na+,K(+)-ATPase (up to 3-fold), whereas the 1-5 microM Ca2+ inhibited it. The cyclic AMP (10(-5) M) inhibited or eliminated Ca(2+)-dependent activation. The decrease in Mg(2+)-ion concentration to 50 microM eliminated the activation and strengthened the inhibition, which reached 100% at the 1-2 microM Ca2+ concentration. The washing of membranes with EGTA eliminated Ca2+ effects on Na+,K(+)-ATPase. These data suggest that the ion-transporting ATPases are activated or inhibited by Ca(2+)-dependent regulators whose activities may be changed by protein kinase catalysed phosphorylation.  相似文献   

5.
Cation sensitivities (K+, Na+, and Ca2+) of luminal and basolateral membrane surfaces of secretory acinar cells were compared using a luminally perfused and externally superfused salivary gland from the aquatic snail, Helisoma trivolvis. Tight junctions delimiting the two membrane surfaces were observed near the acinar lumen suggesting that the total membrane area exposed to the superfusion solution exceeded that in contact with the luminal perfusion solution. The resting membrane potential of acinar cells was found to be dependent upon the K+ concentration in both the external superfusion and the luminal perfusion solutions. Unilateral K+ elevation at either membrane surface produced a rapid and sustained depolarization of the acinar cell. For a given K+ concentration, the level of depolarization produced by K+ elevation at the basolateral surface was significantly higher than at the luminal surface. The highest level of membrane depolarization was observed following simultaneous K+ elevation at both membrane surfaces. The ability of acinar cells to generate overshooting action potentials in response to electrical field stimulation was dependent upon both Na+ and Ca2+. Complete blockade invariably occurred following bilateral removal of either cation. The effects of unilateral removal of either Na+ or Ca2+ proved to be somewhat variable. In general, unilateral removal of Na+ was more effective in reducing the regenerative response than Ca2+ while removal of either cation from the basolateral surface was more effective in reducing the regenerative response than its removal from the luminal surface. Electrically evoked action potentials in acinar cells could also be blocked with unilateral application of the Ca2+ antagonist, cadmium (Cd2+), at either membrane surface. However, higher Cd2+ concentrations were required to achieve complete blockade when applied to the luminal than to the basolateral gland surface. This result fails to support a hypothesis of voltage-sensitive Ca2+ channels being spatially restricted to the luminal cell surface in this preparation.  相似文献   

6.
D-glucose stimulates insulin release from islets exposed to both diazoxide, to activate ATP-responsive K+ channels, and a high concentration of K+, to cause depolarization of the B-cell plasma membrane. Under these conditions, the insulinotropic action of D-glucose is claimed to occur despite unaltered cytosolic Ca2+ concentration, but no information is so far available on the changes in Ca2+ fluxes possibly caused by the hexose. In the present experiments, we investigated the effect of D-glucose upon 45Ca efflux from islets exposed to both diazoxide and high K+ concentrations. In the presence of diazoxide and at normal extracellular Ca2+ concentration, D-glucose (16.7 mmol/l) inhibited insulin release at 5 mmol/l K+, but stimulated insulin release of 90 mmol/l K+. In both cases, the hexose inhibited 45Ca outflow. In the presence of diazoxide, but absence of Ca2+, D-glucose (8.3 to 25.0 mmol/l) first caused a rapid decrease in insulin output followed by a progressive increase in secretory rate. This phenomenon was observed both at 5 mmol/l or higher concentrations (30, 60 and 90 mmol/l) of extracellular K+. It coincided with a monophasic decrease in 45Ca efflux and either a transient (at 5 mmol/l K+) or sustained (at 90 mmol/l K+) decrease in overall cytosolic Ca2+ concentration. The decrease in 45Ca efflux could be due to inhibition of Na(+)-Ca2+ countertransport with resulting localized Ca2+ accumulation in the cell web of insulin-producing cells. A comparable process may be involved in the secretory response to D-glucose in islets exposed to diazoxide and a high concentration of K+ in the presence of extracellular Ca2+.  相似文献   

7.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

8.
Xu J  Xu F  Tse FW  Tse A 《Journal of neurochemistry》2005,92(6):1419-1430
Summary During hypoxia, ATP was released from type I (glomus) cells in the carotid bodies. We studied the action of ATP on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of type I cells dissociated from rat carotid bodies using a Ca(2+) imaging technique. ATP did not affect the resting [Ca(2+)](i) but strongly suppressed the hypoxia-induced [Ca(2+)](i) elevations in type I cells. The order of purinoreceptor agonist potency in inhibiting the hypoxia response was 2-methylthioATP > ATP > ADP > alpha, beta-methylene ATP > UTP, implicating the involvement of P2Y(1) receptors. Simultaneous measurements of membrane potential and [Ca(2+)](i) show that ATP inhibited the hypoxia-induced Ca(2+) signal by reversing the hypoxia-triggered depolarization. However, ATP did not oppose the hypoxia-mediated inhibition of the oxygen-sensitive TASK-like K(+) background current. Neither the inhibition of the large-conductance Ca(2+)-activated K(+) (maxi-K) channels nor the removal of extracellular Na(+) could affect the inhibitory action of ATP. Under normoxic condition, ATP caused hyperpolarization and increase in cell input resistance. These results suggest that the inhibitory action of ATP is mediated via the closure of background conductance(s) other than the TASK-like K(+), maxi-K or Na(+) channels. In summary, ATP exerts strong negative feedback regulation on hypoxia signaling in rat carotid type I cells.  相似文献   

9.
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.  相似文献   

10.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

11.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

12.
Pancreatic alpha-cells, like beta-cells, express ATP-sensitive K(+) (K(ATP)) channels. To determine the physiological role of K(ATP) channels in alpha-cells, we examined glucagon secretion in mice lacking the type 1 sulfonylurea receptor (Sur1). Plasma glucagon levels, which were increased in wild-type mice after an overnight fast, did not change in Sur1 null mice. Pancreas perfusion studies showed that Sur1 null pancreata lacked glucagon secretory responses to hypoglycemia and to synergistic stimulation by arginine. Pancreatic alpha-cells isolated from wild-type animals exhibited oscillations of intracellular free Ca(2+) concentration ([Ca(2+)](i)) in the absence of glucose that became quiescent when the glucose concentration was increased. In contrast, Sur1 null alpha-cells showed continuous oscillations in [Ca(2+)](i) regardless of the glucose concentration. These findings indicate that K(ATP) channels in alpha-cells play a key role in regulating glucagon secretion, thereby adding to the paradox of how mice that lack K(ATP) channels maintain euglycemia.  相似文献   

13.
Mammary myoepithelial cells are specialized smooth musclelike epithelial cells that express the smooth muscle actin isoform: smooth muscle alpha-actin (ACTA2). These cells contract in response to oxytocin to generate the contractile force required for milk ejection during lactation. It is believed that ACTA2 contributes to myoepithelial contractile force generation; however, this hypothesis has not been directly tested. To evaluate the contribution of ACTA2 to mammary myoepithelial cell contraction, Acta2 null mice were utilized and milk ejection and myoepithelial cell contractile force generation were evaluated. Pups suckling on Acta2 null dams had a significant reduction in weight gain starting immediately postbirth. Cross-fostering demonstrated the lactation defect is with the Acta2 null dams. Carmine alum whole mounts and conventional histology revealed no underlying structural defects in Acta2 null mammary glands that could account for the lactation defect. In addition, myoepithelial cell formation and organization appeared normal in Acta2 null lactating mammary glands as evaluated using an Acta2 promoter-GFP transgene or phalloidin staining to visualize myoepithelial cells. However, mammary myoepithelial cell contraction in response to oxytocin was significantly reduced in isolated Acta2 null lactating mammary glands and in in vivo studies using Acta2 null lactating dams. These results demonstrate that lack of ACTA2 expression impairs mammary myoepithelial cell contraction and milk ejection and suggests that ACTA2 expression in mammary myoepithelial cells has the functional consequence of enhancing contractile force generation required for milk ejection.  相似文献   

14.
Bovine vitreous lipid factor (bVLF) is a complex phospholipid isolated from bovine vitreous body with strong Ca(2+)-mobilizing activity. In this study, the effects of bVLF on membrane potential were investigated in EGFR-T17 fibroblasts with the whole-cell patch clamp technique on monolayer cells, as well as with the fluorescent dye bis-oxonol as membrane potential-sensitive probe on monolayer and suspension cells. bVLF induced a transient hyperpolarization characterized by an initial peak and subsequent return to resting membrane potential levels within 1-2 min. The increase of [Ca(2+)](i) was concomitant with an outward current responsible for the hyperpolarizing response. Results with: (a) high [K(+)](o) media; (b) the monovalent cation ionophore gramicidin; and (c) substitution of K(+) with Cs(+) in the intracellular solution were consistent with the involvement of K(+) channels. The bVLF-induced hyperpolarization was blocked by the K(+) channel blockers, quinine and tetraethylamonium chloride, and partially affected by 4-aminopyridine. The calcium ionophore ionomycin caused a similar hyperpolarization as bVLF. When intracellular calcium was buffered by adding BAPTA to the pipette solution, bVLF-activated outward current was prevented. Moreover, the hyperpolarization response was strongly reduced at low doses (3 nM) of specific Ca(2+)-activated K(+) channel blockers, charybdotoxin and iberiotoxin. Based on these observations we conclude that bVLF hyperpolarizes the cells via the activation of a Ca(2+)-dependent K(+) current. In addition, it was observed that bVLF did not have a significant effect on intercellular communication measured by a single patch-electrode technique. Thus, membrane potential changes appeared to belong to the earliest cellular responses triggered by bVLF, and are closely associated with phosphatidic acid-dependent [Ca(2+)](i) mobilization.  相似文献   

15.
In plant cells, Ca(2+) is required for both structural and biophysical roles. In addition, changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) orchestrate responses to developmental and environmental signals. In many instances, [Ca(2+)](cyt) is increased by Ca(2+) influx across the plasma membrane through ion channels. Although the electrophysiological and biochemical characteristics of Ca(2+)-permeable channels in the plasma membrane of plant cells are well known, genes encoding putative Ca(2+)-permeable channels have only recently been identified. By comparing the tissue expression patterns and electrophysiology of Ca(2+)-permeable channels in the plasma membrane of root cells with those of genes encoding candidate plasma membrane Ca(2+) channels, the genetic counterparts of specific Ca(2+)-permeable channels can be deduced. Sequence homologies and the physiology of transgenic antisense plants suggest that the Arabidopsis AtTPC1 gene encodes a depolarisation-activated Ca(2+) channel. Members of the annexin gene family are likely to encode hyperpolarisation-activated Ca(2+) channels, based on their corresponding occurrence in secretory or elongating root cells, their inhibition by La(3+) and nifedipine, and their increased activity as [Ca(2+)](cyt) is raised. Based on their electrophysiology and tissue expression patterns, AtSKOR encodes a depolarisation-activated outward-rectifying (Ca(2+)-permeable) K(+) channel (KORC) in stelar cells and AtGORK is likely to encode a KORC in the plasma membrane of other Arabidopsis root cells. Two candidate gene families, of cyclic-nucleotide gated channels (CNGC) and ionotropic glutamate receptor (GLR) homologues, are proposed as the genetic correlates of voltage-independent cation (VIC) channels.  相似文献   

16.
In olfactory receptor cells, it is well established that cyclic AMP (cAMP) and inositol-1,4,5-trisphosphate (IP(3)) act as second messengers during odor responses. In previous studies, we have shown that cAMP-increasing odorants induce odor responses even after complete desensitization of the cAMP-mediated pathway. These results suggest that at least one cAMP-independent pathway contributes to the generation of odor responses. In an attempt to identify a novel second messenger, we investigated the possible role of cyclic ADP-ribose (cADPR) in olfactory transduction. Turtle olfactory receptor cells were isolated using an enzyme-free procedure and loaded with fura-2/AM. The cells responded to dialysis with cADPR with an inward current and an increase of the intracellular Ca(2+) concentration, [Ca(2+)](i). Flooding of cells with 100 microM cADPR from the pipette also induced an inward current without changes in [Ca(2+)](i) in Na(+)-containing and Ca(2+)-free Ringer solution. In an Na(+)-free and Ca(2+)-containing Ringer solution, cADPR induced only a small inward current with a concomitant increase in [Ca(2+)](i). Inward currents and increases in [Ca(2+)](i) induced by cADPR were completely inhibited by removal of both Na(+) and Ca(2+) from the outer solution. The experiments suggest that cADPR activates a cation channel at the plasma membrane, allowing inflow of Na(+) and Ca(2+) ions. The magnitudes of the inward current responses to cAMP-increasing odorants were greatly reduced by prior dialyses of a high concentration of cADPR or 8-bromo-cyclic ADP-ribose (8-Br-cADPR), an antagonist. It is possible that the cADPR-dependent pathway contributes to the generation of olfactory responses.  相似文献   

17.
To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca(2+) dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst-interburst electrical events accompanied by Ca(2+) transients, and continuous firing of action potentials over [G] ranges of 0-6, 7-18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca(2+) transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst-interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate-sensitive K(+) current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca(2+)- or Na(+)-dependent currents, which were generated by the plasma membrane Ca(2+) pump, Na(+)/K(+) pump, Na(+)/Ca(2+) exchanger, and TRPM channel. Accumulation and release of Ca(2+) by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings.  相似文献   

18.
Vasostatins (VSs) are vasoactive peptides derived from chromogranin A (CgA), a protein contained in secretory granules of chromaffin and other cells. The negative inotropic effect and the reduction of isoproterenol (Iso)-dependent inotropism induced by VSs in the heart suggest that they have an antiadrenergic function. However, further investigation of the mechanisms of action of VSs is needed. The aim of the present study was to define the signaling pathways activated by VS-1 in mammalian ventricular myocardium and cultured endothelial cells that lead to the modulation of cardiac contractility. Ca(2+) and nitric oxide (NO) fluorometric confocal imaging was used to study the effects induced by recombinant human VS-1 [STA-CgA-(1-76)] on contractile force, L-type Ca(2+) current, and Ca(2+) transients under basal conditions and after beta-adrenergic stimulation in rat papillary muscles and ventricular cells and the effects on intracellular Ca(2+) concentration and NO production in cultured bovine aortic endothelial (BAE-1) cells. VS-1 had no effect on basal contractility of papillary muscle, but the effect of Iso stimulation was reduced by 27%. Removal of endocardial endothelium and inhibition of NO synthesis and phosphatidylinositol 3-kinase (PI3K) activity abolished the antiadrenergic effect of VS-1 on papillary muscle. In cardiomyocytes, 10 nM VS-1 was ineffective on basal and Iso (1 microM)-stimulated L-type Ca(2+) current and Ca(2+) transients. In BAE-1 cells, VS-1 induced a Ca(2+)-independent increase in NO production that was blocked by the PI3K inhibitor wortmannin. Our results suggest that the antiadrenergic effect of VS-1 is mainly due to a PI3K-dependent NO release by endothelial cells, rather than a direct action on cardiomyocytes.  相似文献   

19.
Effect of chlorpromasine (specific blocking agent of calmoduline) on Na(+)-Ca(2+)-exchanger functioning, Ca(2+)-pump and potential dependent Ca(2+)-channels in plasmatic membrane of isolated salivary glands in Chironomus plumosus L. larvae was investigated. Addition of chlorpromasine in different concentrations to the incubation medium with physiological Na+ and K+ concentration increased Ca2+ content in the gland tissue and secretion of general protein by gland cells. Chlorpromasine addition to the hyposodium and hyperpotassium mediums decreased Ca2+ content in the gland tissue and protein secretion. We made a conclusion that chlorpromasine, as an inhibitor of calmoduline, blocks Na(+)-Ca(2+)-exchanger and Ca(2+)-pump of plasmatic membrane of secretory cells. Potentialdependent Ca(2+)-channels are also effectively blocked by chlorpromasine but mechanism of this process is unknown. We suppose that Ca(2+)-calmoduline complex forming leads to increase of calcium oscillations amplitude in the cells of the investigated glands and stimulation of secretion.  相似文献   

20.
Astrocytes respond to inflammatory stimuli and may be important modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in primary culture behave in response to inflammatory stimuli concerning intracellular Ca(2+) responses, expression of Toll-like receptor 4 (TLR4), Na(+)/K(+)-ATPase, actin filament organization, and expression of cytokines. In a cell culture model with lipopolysaccharide (LPS), astrocyte response was assessed first in the acute phase and then after incubation with LPS for 1-48 h. The concentration curve for LPS-stimulated Ca(2+) responses was bell-shaped, and the astrocytes expressed TLR4, which detects LPS and evokes intracellular Ca(2+) transients. After a long incubation with LPS, TLR4 was up-regulated, LPS-evoked Ca(2+) transients were expressed as oscillations, Na(+)/K(+)-ATPase was down-regulated, and the actin filaments were disorganized. Interleukin-1β (IL-1β) release was increased after 24 h in LPS. A second aim was to try to restore the LPS-induced changes in astrocytes with substances that may have dose-dependent anti-inflammatory properties. Naloxone and ouabain were tested separately in ultralow or high concentrations. Both substances evoked intracellular Ca(2+) transients for all of the concentrations from 10(-15) up to 10(-4) M. Neither substance blocked the TLR4-evoked Ca(2+) responses. Naloxone and ouabain prevented the LPS-induced down-regulation of Na(+)/K(+)-ATPase and restored the actin filaments. Ouabain, in addition, reduced the IL-1β release from reactive astrocytes. Notably, ultralow concentrations (10(-12) M) of naloxone and ouabain showed these qualities. Ouabain seems to be more potent in these effects of the two tested substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号