首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We utilized cytochrome oxidase (CO) as a marker of neuronal functional activity to examine metabolic changes in brain stem respiratory nuclei of rats from newborn to 21 day of age. The pre-B?tzinger complex (PBC), upper airway motoneurons of nucleus ambiguus (NA(UAM)), ventrolateral nucleus of solitary tract (NTS(VL)), and medial and lateral parabrachial nuclei (PB(M) and PB(L), respectively) were examined at postnatal days (P) 0, 1, 2, 3, 4, 5, 7, 14, and 21. CO histochemistry was performed, and the intensity of CO reaction product was quantitatively analyzed by optical densitometry. In addition, CO histochemistry was combined with neurokinin-1 receptor (NK1R) immunogold-silver staining to doubly label neurons of PBC in P14 animals. The results showed that levels of CO activity generally increased with age in all of the nuclei examined. However, a significant decrease was found in NA(UAM) at P3 (P < 0.01), and a distinct plateau of CO activity was noted at P3 in PBC and at P3 and P4 in NTS(VL), PB(M), and PB(L). Of the neurons examined in PBC, 83% were doubly labeled with CO and NK1R. Of these, CO activity was high in 33.9%, moderate in 27.3%, and light in 38.8% of neurons, suggesting different energy demands in these metabolic groups that may be related to their physiological or synaptic properties. The transient decrease or plateau in CO activity at P3 and P4 implies a period of synaptic adjustment or reorganization during development, when there may be decreased excitatory synaptic drive or increased inhibitory synaptic drive, or both, in these brain stem respiratory nuclei. The adjustment, in turn, may render the system less responsive to respiratory insults. This may bear some relevance to our understanding of pathological events during postnatal development, such as occurs in sudden infant death syndrome.  相似文献   

2.
Previously, we reported that the expression of cytochrome oxidase in a number of brain stem nuclei exhibited a plateau or reduction at postnatal day (P) 3-4 and a dramatic decrease at P12, against a general increase with age. The present study examined the expression of glutamate, N-methyl-D-aspartate receptor subunit 1 (NMDAR1), GABA, GABAB receptors, glycine receptors, and glutamate receptor subunit 2 (GluR2) in the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, medial accessory olivary nucleus, dorsal motor nucleus of the vagus, and cuneate nucleus, from P2 to P21 in rats. Results showed that 1) the expression of glutamate increased with age in a majority of the nuclei, whereas that of NMDAR1 showed heterogeneity among the nuclei; 2) GABA and GABAB expressions decreased with age, whereas that of glycine receptors increased with age; 3) GluR2 showed two peaks, at P3-4 and P12; and 4) glutamate and NMDAR1 showed a significant reduction, whereas GABA, GABAB receptors, glycine receptors, and GluR2 exhibited a concomitant increase at P12. These features were present but less pronounced in hypoglossal nucleus and dorsal motor nucleus of the vagus and were absent in the cuneate nucleus. These data suggest that brain stem nuclei, directly or indirectly related to respiratory control, share a common developmental trend with the pre-Botzinger complex in having a transient period of imbalance between inhibitory and excitatory drives at P12. During this critical period, the respiratory system may be more vulnerable to excessive exogenous stressors.  相似文献   

3.
Previously, we found that the rat pre-B?tzinger complex (PBC) exhibited reduced cytochrome oxidase (CO) activity on postnatal days (P) 3-4 and especially on P12, with a concomitant decrease in glutamate and N-methyl-d-aspartate receptor subunit 1, and an increase in GABA, GABA(B), glycine receptor, and glutamate subunit 2. We hypothesized that the PBC would be more affected by carotid body denervation (CBD) during the two critical windows than at other times. Pairs of CBD and sham animals at each postnatal day from P2 to P14 and at P21 were operated on and survived for 3 days. Brain stems were processed for CO and neurokinin-1 receptor for the identification of PBC. Results indicate that CBD caused a significant loss in body weight in all animals and a reduction in PBC somal size when the surgery was between P2 and P7. CBD also induced a significant decrease in CO activity of the PBC in most animals and a distinct delay, as well as prolongation of the maturational process, especially when induced close to P3 and P11-P13.  相似文献   

4.
The pre-B?tzinger complex (PBC) is postulated as the center of respiratory rhythmogenesis. Previously, we found a reduction or plateau of cytochrome oxidase (CO) activity in the PBC and other respiratory nuclei at postnatal days 3-4, despite a general increase of CO with age, suggesting a period of synaptic readjustment. The present study examined the expression of CO and a number of neurochemicals in the PBC at closer time intervals. At postnatal days 3-4 and, more prominently, at postnatal day 12, expression of CO, glutamate, and N-methyl-D-aspartate receptor subunit 1 was reduced, whereas expression of GABA, GABA(B) receptor, glycine receptor, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit 2 was increased. These findings are consistent with our hypothesis that decreased CO activity is associated with an increase in inhibitory drive (mediated by GABA and glycine, their receptors, and possibly blockage of Ca(2+) entry by glutamate receptor subunit 2) and a decrease in excitatory drive (mediated by glutamate and its receptors). Our findings point to two critical periods during postnatal development of the rat when their respiratory system may be more vulnerable to respiratory insults.  相似文献   

5.
6.
Previously, we reported a critical period [around postnatal day (P) 12-13 in the rat] in respiratory network development when distinct neurochemical, metabolic, and physiological changes occur. Since serotonin 2A (5-HT(2A)) receptors play an important role in respiratory modulation, we hypothesized that they may undergo developmental adjustments during the critical period. Semi-quantitative immunohistochemical analyses were conducted in labeled neurons in a number of brain stem nuclei with or without known respiratory functions from P2 to P21 in rats. Our data indicate that the expressions of 5-HT(2A) receptors in neurons of the pre-B?tzinger complex, the nucleus ambiguus, and the hypoglossal nucleus were maintained within a relatively narrow range between P2 and P21, with a dip at P3-P4 and a significant reduction only at P12. This change was not observed in the nonrespiratory cuneate nucleus. These results suggest that reduced expressions of 5-HT(2A) receptors at P12 contributes to neurochemical imbalance within brain stem respiratory nuclei at that time and may be involved in decreased hypoxic ventilatory response at this critical period of development.  相似文献   

7.
The developmental role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptors in respiratory regulation remains undefined. To study this issue, minute ventilation (V(E)) was measured in 5-, 10-, and 15-day-old intact freely behaving rat pups using whole body plethysmography during room air (RA), hypercapnic (5% CO(2)), and hypoxic (10% O(2)) conditions, both before and after administration of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide disodium (NBQX; 10 mg/kg ip). In all age groups, V(E) during RA was unaffected by NBQX, despite reductions in breathing frequency (f) induced by increases in both inspiratory and expiratory duration. During hypoxia and hypercapnia, V(E) increases were similar in both NBQX and control conditions in all age groups. However, tidal volume was greater and f lower after NBQX. To determine if AMPA receptor-positive neurons are recruited during hypoxia, immunostaining for AMPA receptor (GluR2/3) and c-fos colabeling was performed in caudal brain stem sections after exposing rat pups at postnatal ages 2, 5, 10, and 20 days, and adult rats to room air or 10% O(2) for 3 h. GluR2/3 expression increased with postnatal age in the nucleus of the solitary tract (NTS) and hypoglossal nucleus, whereas a biphasic pattern emerged for the nucleus ambiguus (NA). c-fos expression was enhanced by hypoxia at all postnatal ages in the NTS and NA and also demonstrated a clear maturational pattern. However, colocalization of GluR2/3 and c-fos was not affected by hypoxia. We conclude that AMPA glutamate receptor expression in the caudal brain stem is developmentally regulated. Furthermore, the role of non-NMDA receptors in respiratory control of conscious neonatal rats appears to be limited to modest, albeit significant, regulation of breathing pattern.  相似文献   

8.
Previously, we reported that the pre-B?tzinger complex (PBC) exhibited a dramatic reduction in cytochrome oxidase activity at postnatal day (P) 12. This coincided in time with decreases in glutamate and NMDA receptor subunit 1 and increases in GABA, GABAB, glycine receptor, and glutamate receptor GluR2. To test our hypothesis that various alpha-subunits of GABAA receptors also undergo changes in their expression during postnatal development, as they do in other brain regions, we undertook an in-depth immunohistochemical study of GABAA receptor subunits alpha1, alpha2, and alpha3 in the PBC of P0 to P21 rats. We found that 1) GABAA alpha3-subunit was expressed at relatively high levels at P0, which then declined with age; 2) GABAA alpha1-subunit was expressed at relatively low levels at P0 but increased with age; 3) the developmental trends of subunits alpha1 and alpha3 intersected at P12; and 4) GABAA alpha2-subunit expression was moderate to light at P0 and remained quite constant during development, being lowest at P21. These findings suggest that the apparent switch in relative expressions of subunits alpha3 and alpha1 during development and the intersection of slopes around P12 may be associated with possible changes in GABAA receptor subtypes that would mediate different functional properties of GABA transmission, such as primarily a less efficient inhibitory transmission before P12 and a more mature inhibitory effect at P12 and thereafter, as suggested by the kinetics of distinct postsynaptic potentials. This mechanism may contribute partially to the dramatic reduction in cytochrome oxidase activity within the PBC at P12, as shown previously.  相似文献   

9.
Aminophylline is a respiratory stimulant commonly used for the treatment of central apnea. Experiences from clinical practice, however, revealed that aminophylline is not reliably effective in preterm infants, whereas it is normally effective in infants and mature patients. In an established animal model for postnatal development of respiratory control mechanisms, we therefore examined the hypothesis that the clinical observations reflect a developmental change in the sensitivity of the central respiratory network to methylxanthines. The medullary respiratory network was isolated at different postnatal ages (postnatal days 1-13; P1-P13) in a transverse mouse brain stem slice preparation. This preparation contains the pre-B?tzinger complex (PBC), a region that is critical for generation of respiratory rhythm. Spontaneous rhythmic respiratory activity was recorded from the hypoglossal (XII) rootlets and from neurons in the PBC by using the whole cell patch clamp technique. Bath-applied aminophylline [20 microM] increased the frequency (+41%) in neonatal animals (P1-P6) without affecting the amplitude of respiratory burst activity in XII rootlets. The same concentration of aminophylline did not have any significant effect on the frequency of respiratory XII bursts but increased the amplitude (+31%) in juvenile animals (P7-P13). In the same age group, aminophylline also augmented the amplitude and the duration of respiratory synaptic drive currents in respiratory PBC neurons. The data demonstrate that augmentation of the respiratory output is due to direct enhancement of central respiratory network activity and increase of synaptic drive of hypoglossal motoneurons in juvenile, but not neonatal, animals. This indicates a developmental change in the efficacy of aminophylline to reinforce central respiratory network activity. Therefore, we believe that the variable success in treating respiratory disturbances in premature infants reflects maturational changes in the expression of receptors and/or intracellular signal pathways in the central respiratory network.  相似文献   

10.
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0–P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood. This work was supported by the Graduate Research School Molecular, physiological and pharmacological analysis of cellular membrane transport, DFG GRK 845/1.  相似文献   

11.
Abstract: To determine the regional and cellular distribution of the metabotropic glutamate receptor mGluR7a, we used rabbit anti-peptide polyclonal-targeted antibodies against the C-terminal domain of mGluR7a. Here we report that immunocytochemistry at the light-microscopic level revealed that mGluR7a is widely distributed throughout the adult rat brain, with a high level of expression in sensory areas, such as piriform cortex, superior colliculus, and dorsal cochlear nucleus. In most brain structures, mGluR7a immunoreactivity is characterized by staining of puncta and fibers. However, in some regions, including the locus ceruleus, cerebellum, and thalamic nuclei, both cell bodies and fibers are immunopositive. The changes in levels of mGluR7a during development were investigated with immunoblotting and immunocytochemical analysis. Immunoblot analysis revealed that the levels of mGluR7a are differentially regulated across brain regions during postnatal development. In cortical regions (hippocampus, neocortex, and olfactory cortex), mGluR7a levels were highest at postnatal day 7 (P7) and P14, then declined in older rats. In contrast, mGluR7a levels were highest at P7 in pons/medulla and cerebellum and decreased markedly between P7 and P14. In these regions, mGluR7a immunoreactivity was at similar low levels at P14 and P21 and in adults. Immunocytochemical analysis revealed that staining for mGluR7a was exceptionally high in fiber tracts in P7 animals relative to adults. Furthermore, the pattern of mGluR7a immunoreactivity in certain brain structures, including cerebellum, piriform cortex, and hippocampus, was significantly different in P7 and adult animals. In summary, these data suggest that mGluR7a is widely distributed throughout the rat brain and that this receptor undergoes a dynamic, regionally specific regulation during postnatal development.  相似文献   

12.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

13.
By means of indirect immunoperoxidase procedures using the biotin- avidin method in combination with monoclonal antibodies to the human estrogen receptor it has been possible to map out distinct populations of nerve cells possessing nuclear estrogen immunoreactivity in rat brain. High densities of strongly estrogen immunoreactive nerve cells were especially observed in the medial preoptic area and the bed nucleus of the stria terminalis but also in the magnocellular part of the arcuate nucleus, the ventral premammillary nuclei and in the area between the medial and lateral hypothalamus including the lateral component of the ventromedial hypothalamic nucleus. Similar results were obtained in the male and female adult brain. Following castration of the male and female adult rat, the nuclear estrogen immunoreactivity did not change its location but the degree of immunoreactivity was increased. Administration of 50 μg/kg of estrogen benzoate in the castrated animals induced a marked disappearence of the estrogen immunoreactivity in the nerve cells in all regions analyzed. The results give further evidence for the existence of a selective population of estrogen receptor containing neurons in the female and male brain of adult animals and that the estrogen free receptor is associated with the nucleus. Upon activation the nuclear estrogen receptors appear to loose this immunoreactivity probably due to a change in the conformation of the receptor protein.  相似文献   

14.
HISTOCHEMISTRY OF RAT BRAIN STEM MONOAMINE OXIDASE DURING MATURATION   总被引:1,自引:0,他引:1  
—Monoamine oxidase (MAO) activity in the nuclei and tracts of the medulla and pons of the rat from birth to 90 days is reported. Prominent MAO activity was present in the locus coeruleus and nucleus ambiguus at birth. At 5 days a weak reaction localized mainly within the neuropil and glia cells was detected in several other nuclei. By 10 days all nuclei were identified with MAO activity varying from weak to intense, the activity showing further increases at 15 and 20 days. Staining in nerve fibres was negligible at 5 days but increased rapidly to 15 days in some tracts when the characteristic beading pattern was distinct. At 30 days differentiation in intensity of MAO activity between the nuclei diminished and no increase was apparent after 55 days. The results are compared with the distribution of brain stem acetylcholinesterase during maturation and also with regions specific in catecholamine or serotonin content in the adult rat brain stem. This and an earlier study on the cerebrum suggest that MAO is another component of the brain that falls into the caudal-rostral concept of biochemical maturation and that it fits into a group of enzymes exhibiting a similar pattern of increase in activity during development.  相似文献   

15.
The distribution of cells immunoreactive for the molluscan tetrapeptide FMRFamide in the brain and the pituitary of Eigenmannia was investigated immunohistochemically by the use of the peroxidase-antiperoxidase (PAP) technique and unlabelled antibodies. FMRFi neurons were located in the ganglion of the nervus terminalis at the rostroventral side of the bulbus olfactorius. FMRFi perikarya were also found in a dorsomedial diencephalic nucleus, in the nucleus ventromedialis, in some liquor-contacting neurons of the nucleus lateralis tuberis and of the nucleus recessus lateralis and posterior. The perikarya of the midbrain pre-pacemaker nucleus were only weakly immunoreactive for FMRFamide while large FMRFi neurons (T-cells) occurred in lamina VI of the torus semicircularis, in the brain stem, in dorsal and medial layers of the lobus lineae lateralis posterior (LLLp) and in the medullary electric organ pacemaker nucleus (pm). FMRFi fibers and nerve endings were found in the bulbus olfactorius, in medial areas of the telencephalon, and rather densely in the rostral diencephalon. Ventrocaudally to most of the hypothalamic nuclei the occurrence of immunoreactive fibres increased; many coursed to the pituitary through the pituitary stalk. FMRFi fibres also appeared in the deep layers of the tectum opticum, in the torus semicircularis, in the medial and lateral medulla and below the pacemaker nucleus. Wherever FMRFamide-immunoreactivity occurred fibres and nerve endings could be found in close contact with blood vessels.  相似文献   

16.
The medial nucleus of the trapezoid body (MNTB) acts as a relay nucleus in the transmission of auditory information from the cochlear nucleus (CN) to the lateral superior olive. Glutamate receptors mediate the excitatory synaptic transmission in the CN-MNTB projection. Here, we used immunohistochemistry to investigate the expression pattern of the kainate receptor subunits KA2 and GluR6/7 and the orphan glutamate receptor subunits delta 1/2 in principal neurons of the rat MNTB during early postnatal development (P2-59). To objectively quantify the intensity of immunoreactivity, images were scanned with a CCD camera and used for gray-value measurements. At all ages analyzed, each of the three antisera produced immunoreactivity in the somata of MNTB principal cells and in the neuropil. KA2 immunoreactivity of somata and neuropil remained nearly constant between P2 and 23. In contrast, the intensity of GluR6/7 immunoreactivity of somata and neuropil increased between P2 and 6, followed by a decrease until P10. Between P10 and 23, GluR6/7 immunoreactivity of neuropil remained nearly constant, whereas it increased in the somata. In both somata and neuropil, the intensity of delta 1/2 immunoreactivity decreased between P2 and 10, reaching a constant, low level by P10. Our results demonstrate the continuous presence of the glutamate receptor subunits KA2, GluR6/7 and delta 1/2 in the developing MNTB, yet quantitative changes occur which may be associated with functional differences.  相似文献   

17.
1. The subcellular distribution of binding sites for 125I-labeled alpha-bungarotoxin was studied in rat cerebral cortex. Primary fractions showing higher specific activity than homogenate were P2 (crude mitochondria and nerve endings) and P3-P2 was subfractionated on a Ficoll gradient with the P2B (nerve ending) subfraction exhibiting the greatest recovery (65%) and enrichment of toxin binding. Toxin binding showed a distribution similar to that of acetylcholinesterase, choline acetyltransferase, and sodium and potassium ion-activated ATPase. 2. P2B and P3 were subfractionated on five-step discontinuous sucrose gradients. The highest specific activity of toxin binding and acetylcholinesterase was associated with fractions of relatively low buoyant density, while choline acetyltransferase activity was associated with fractions of higher density. 3. Toxin binding, acetylcholinesterase, and choline acetyltransferase activities were relatively high in olfactory lobes, cerebral cortex, thalamic region, caudate nucleus, and brain stem; intermediate in hippocampus; low in cerebellum. 4. The relationship of toxin binding to the putative acetylcholine receptor in brain is discussed.  相似文献   

18.
The aim of this study was two-fold: 1) To provide in DA-HAN rats the basic brain monoamine data useful for later investigations of the neurochemical effects of sensory alterations and 2) to assess whether there is a relationship between the monoaminergic pattern in medial vestibular nuclei and optokinetic performances. We comparatively studied the regional brain monoamine distribution and the optokinetic performances in pigmented DA-HAN and albino Sprague-Dawley rats. As expected, the optokinetic responses and vestibulo-ocular reflex gain were by far more efficient in DA-HAN rats. Norepinephrine (NE), dopamine (DA), serotonin (5-HT) and their metabolites were determined in retina, brainstem nuclei and dopaminergic areas. DA-HAN rats exhibited an increased noradrenergic activity in the medial vestibular nuclei, locus cœruleus and anteroventral cochlear nucleus, an extended decrease of serotonergic activity in brainstem nuclei and increased DA stores with a reduced dopaminergic activity in most dopaminergic areas. These data confirm and extend the general findings that biochemical data obtained in one strain cannot be extrapolated to another strain. The possible role of the morphological neuronal abnormalities and functional impairment induced by albinism has been discussed especially in medial vestibular nucleus, cochlear nuclei and retina. Alternatively, behavioral factors may also explain some of the observed neurochemical differences.  相似文献   

19.
Using in situ hybridization, we analyzed the expression pattern of the Zac1 gene in mouse brain during the embryonic and postnatal development. Zac1 is a new gene that regulates extensive apoptosis and cell cycle arrest through unrelated pathways. At embryonic stages, strong expression was observed in brain areas with active proliferation (ventricular zone and numerous neuroepithelius) and in nervous system (neural retina and neural tube). In addition, some areas with differentiation activity were noticeably labeled such as arcuate nucleus and amygdaloid region of the brain together with other embryonic sites (hindlimb, forelimb and somites). From P0 onwards, the expression appeared in some proliferative areas, such as subventricular zone and cerebellum (external granular layer and Purkinje cells) and in some synaptic plasticity areas, such as the dorso and ventromedial hypothalamic nuclei, arcuate nucleus, ventral thalamic nucleus.  相似文献   

20.
Cholinergic neuronal differentiation factor/leukemia inhibitory factor (CDF/LIF) is a multi-functional cytokine that affects neurons as well as many other cell types. Toward elucidating its neural functions in vivo, we previously investigated the distribution of CDF/LIF binding sites with iodinated native CDF/LIF in embryonic to postnatal day 0 (P0) rats. In the present study, we have extended our examination to postnatal ages and find that specific CDF/LIF binding sites are present at defined developmental stages in additional brain regions not previously exhibiting binding by P0. High levels of binding are detected in all P7 sensory and autonomic ganglia examined, but only in restricted postnatal central nervous system structures. Cranial motor and mesencephalic trigeminal neurons maintain high levels throughout, while binding to spinal motor neurons, which decreases to low levels at P0, reappears by P14 and increases with age. Most other structures, which show detectable binding by P0, exhibit higher levels at postnatal ages, including the red, deep, ventral cochlear, trapezoid, superior olivary, vestibular, ventral tegmental, and ventral posterior thalamic nuclei as well as the glomerular layer of the olfactory bulb. High levels are also detected in several structures for the first time after P0, including the cerebellar cortex (molecular and Purkinje cell layers), lateral reticular nucleus of the medulla and reticular formation, as well as the reticulotegmental, medial geniculate, solitary (rostral, dorsomedial, and commissural regions), medial septal, lateral mammillary, and lateral habenular nuclei. These results not only identify regions of potential CDF/LIF-responsive neurons and glia throughout development but suggest new CDF/LIF roles in the nervous system. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 163–192, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号