首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A highly active glycogen phosphorylase was purified from Neurospora crassa by polyethylene glycol fractionation at pH 6.16 combined with standard techniques (chromatography and salt fractionation). The final preparation had a specific activity of 65 +/- 5 U/mg of protein (synthetic direction, pH 6.1, 30 degrees C) and was homogeneous by the criteria of gel electrophoresis, amino-terminal analysis, gel filtration, and double immunodiffusion in two dimensions. The enzyme had a native molecular weight of 180,000 +/- 10,000 (by calibrated gel filtration and gel electrophoresis) and a subunit molecular weight of 90,000 +/- 5,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Each subunit contained one molecule of pyridoxal phosphate. No phosphoserine or phosphothreonine was detected by amino acid analysis optimized for phosphoamino acid detection. The enzyme isolated from cells grown on high-specific-activity 32Pi (as sole source of phosphorus) contained one atom of 32P per subunit. All the radioactivity was removed by procedures that removed pyridoxal phosphate. Thus, the enzyme could not be classified as an a type (phosphorylated, active in the absence of a cofactor) or as a b type (non-phosphorylated, inactive in the absence of a cofactor). The level of phosphorylase was markedly increased in mycelium taken from older cultures in which the carbon source (glucose or sucrose) had been depleted. The polyethylene glycol fractionation scheme applied at pH 7.5 to mycelial extracts of younger cultures (taken before depletion of the sugar) resulted in co-purification of glycogen phosphorylase and glycogen synthetase.  相似文献   

2.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38-39 kDa, as judged by SDS-PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5+/-4.5 microM and uronic acids, such as D-galacturonic acid (Km=3.79+/-0.5 mM) and D-glucuronic acid (Km=4.67+/-0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP(+). The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H(2)O(2), suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

3.
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamoyl-L-aspartate (L-CA) to L-5,6-dihydroorotate (L-DHO), which is the third enzyme in de novo pyrimidine biosynthesis. The enzyme was purified from two parasitic protozoa, Crithidia fasciculata (about 16,000-fold) and Plasmodium berghei (about 790-fold). The C. fasciculata enzyme had a native molecular weight (Mr) of 42,000 +/- 5000, determined by gel filtration chromatography, and showed a single detectable protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with Mr 44,000 +/- 3000. The DHOase from P. berghei had a native molecular weight of 40,000 +/- 4000 and a subunit molecular weight on SDS-PAGE of 38,000 +/- 3000. The DHOase from both parasites, in contrast to the mammalian enzyme which resides on a trifunctional protein of the first two enzymes of the pathway, carbamoyl-phosphate synthase and aspartate transcarbamylase, is monomeric and has no oligomeric structure as studied by chemical cross-linking with dimethyl suberimidate. The rate of cyclization of L-CA by the C. fasciculata enzyme was relatively high at acidic pH, decreasing to a very low rate at alkaline pH. In contrast, the rate of ring cleavage of L-DHO was very low at acidic pH and increased to a higher rate at alkaline pH. These pH-activity profiles gave an intersection at pH 6.6. The Km and kcat for L-CA were 0.846 +/- 0.017 mM and 39.2 +/- 6.4 min-1, respectively; for L-DHO, they were 25.85 +/- 2.67 microM and 258.6 +/- 28.5 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A new aspartic proteinase was isolated from porcine intestine mucosa by affinity chromatography on pepstatin-Sepharose 4B and gel filtration on Sephadex G-100. The enzyme was purified 1600-fold and appeared homogeneous upon polyacrylamide gel electrophoresis. The proteinase has a Mr 60 000 +/- 4000 Da. During sodium dodecyl sulfate polyacrylamide gel electrophoresis the enzyme produced a single protein band (Mr 30 000 +/- 3000 Da). Isoelectric focusing revealed that the enzyme has several multiple forms (pI 6.9, 7.5, 8,0). The enzyme is a glycoprotein containing 5.9% of carbohydrates; the mannose to galactose ratio is 1:3. The amino acid composition of the enzyme was studied. The proteinase splits an oxidized insulin B-chain and synthetic substrates. The pH optimum is 3.2. The enzyme is immunologically identical to porcine spleen cathepsin D.  相似文献   

5.
Avian liver p-hydroxyphenylpyruvate hydroxylase (EC 1.13.11.27) was purified to a 1000-fold increase in specific activity over crude supernatant, utilizing a substrate analogue, o-hydroxyphenylpyruvate, to stabilize the enzyme. The preparation was homogeneous with respect to sedimentation with a sedimentation velocity (s20,w) of 5.3 S. The molecular weight of the enzyme was determined to be 97,000 +/- 5,000 by sedimentation equilibrium, and the molecular weight of the subunits was determined to be 49,000 +/- 3,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis revealed heterogeneity of the purified enzyme. The multiple molecular forms were separable by isoelectric focusing, and their isoelectric points ranged from pH 6.8 to 6.0. The amino acid compositions and tryptic peptide maps of the three forms isolated by isoelectric focusing were very similar. The forms of the enzyme had the same relative activity toward p-hydroxyphenylpyruvate and phenylpyruvate. Conditions which are known to accelerate nonenzymic deamidation of proteins caused interconversion of the multiple molecular forms. Iron was the only transition metal found to be associated with the purified enzyme at significant levels. The amount of enzyme-bound iron present in equilibrium-dialyzed samples was equivalent to 1 atom of iron per enzyme subunit. Purification of the enzyme activity correlated with the purification of the enzyme-bound iron. An EPR scan of the purified enzyme gave a signal at g equal 4.33, which is characteristic of ferric iron in a rhombic ligand field.  相似文献   

6.
alpha-D-Galactosidase was isolated from untoasted soybean meal and purified to homogeneity by affinity chromatography on N-epsilon-aminoacaproyl alpha-D-galactopyranosylamine-Sepharose. The purified enzyme destroyed the B-specificity of human ovarian cyst B-glycoprotein with an accompanying increase in H-specificity, and converted human type-B erythrocytes to type O. The enzyme consists primarily of a tetramer, molecular weight 150 000 +/- 5 000 at pH 4.0 and of a monomer, molecular weight 40 000 +/- 3 000 at pH 8.0. Polyacrylamide gel electrophoresis in dodecyl sulfate at pH 7.2 distinguished between two types of monomeric unit of similar molecular weight. N-terminal alanine was identified as the sole N-terminal amino acid residue. The enzyme was shown to be devoid of carbohydrate.  相似文献   

7.
The heterogeneity of dipeptidyl peptidase IV (EC 3.4.14.5) was investigated in normal human serum. Thin-layer analytical isoelectric focusing revealed the presence of multiple molecular forms of the enzyme, their isoelectric points being in the pH range of 3.30-4.25. The maximum of enzyme activity appeared around pH 3.50. After treatment with neuraminidase the pI shifted to 4.70-5.40 with two maxima at pH 5.00 and 5.15. The Triton X-100 solubilized as well as the papain-treated-Triton X-100 solubilized enzyme from the whole human adult jejunal biopsy were also found to be heterogeneous. They focused--both before and after neuraminidase treatment--at pH values different from those of the enzyme of normal human serum. There was almost no pI shift after neuraminidase treatment of the intestinal enzyme from adult enterobiopsy. Electrophoresis in continuous polyacrylamide gradient gels as well as gel chromatography on Bio-Gel A-1.5m revealed two molecular forms of dipeptidyl peptidase IV in normal human serum. The estimated relative molecular mass of the major enzyme form was 250 000 in both the separation techniques used. On the other hand, the apparent relative molecular mass of the minor enzyme form was 450 000 as assessed by gradient gel electrophoresis, and 550 000, when estimated by gel chromatography. The Km values for glycyl-L-proline-4-nitroanilide as substrate with the major and minor forms of the serum enzyme were 1.60 +/- 0.39 X 10(-4) mol/l and 1.60 +/- 0.13 X 10(-4) mol/l, respectively. Our results indicate that the dipeptidyl peptidase IV in normal human serum is a heterogeneous enzyme as far as its charge and molecular size are concerned.  相似文献   

8.
Superoxide dismutase has been isolated and characterised from the extreme thermophile Thermus aquaticus. The pure enzyme is a reddish-purple manganese-containing protein with a molecular weight of approximately 80000 +/- 5000. Combination of gel electrophoresis in dodecylsulphate and amino acid analysis shows that it is composed of four identical subunit polypeptide chains consisting of approximately 186 amino acids. The tetrameric protein contains two atoms of manganese. A stable manganese-free apoprotein has been prepared by treatment with EDTA in 8 M urea at acidic pH. The apoprotein regains the tetrameric structure in the absence of manganese but is inactive. Reconstitution of active Mn-enzyme was achieved byaddition of Mm2+ apoprotein in 8 M urea at acid pH. Reconstitution was monitored by absorption spectroscopy, manganese analysis and regain of activity and by these criteria the reconstituted enyzme with two atoms Mn per mole is indistinguishable from the native enzyme. The enhanced stability of the thermophile apoenzyme and Mn-enzyme is of advantage for studies of the structure and mechanism of action of superoxide dismutase. The N-terminal amino acid sequence to the 40th residue of the submit was determined by automated Edman degradation. The sequence has a close resemblance to that of the dimeric Mn-enzyme from another thermophile, Bacillus stearothermophilus.  相似文献   

9.
AIMS: The key enzyme in the fructose-6-phosphate shunt in bifidobacteria, Fructose-6-phosphate phosphoketolase (F6PPK; E.C. 4.1.2.22.), was purified to electrophoretic homogeneity for the first time from Bifidobacterium longum (BB536). METHODS AND RESULTS: A three-step procedure comprising acetone fractionation followed by fast protein liquid chromatography (FPLC) resulted in a 30-fold purification. The purified enzyme had a molecular mass of 300 +/- 5 kDa as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 93 +/- 1 kDa and 59 +/- 0.5 kDa, as determined by SDS-PAGE. CONCLUSION: The deduced N-terminal amino acid sequences of the two subunits revealed no significant similarity between them and other proteins when compared to the data bases of EMBL and SWISS-PROT, indicating that this could be the first report on N-terminal amino acid sequence of F6PPK. SIGNIFICANCE AND IMPACT OF THE STUDY: The data from this study will be used to design oligonucleotide probe specific for bifidobacteria and to study the gene encoded F6PPK.  相似文献   

10.
11.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

12.
The nucleotide sequence of the beta-xylosidase (xynB) gene from Bacillus pumilus has been reported previously [Moriyama, H., Fukusaki, E., Crespo, J.C., Shinmyo, A. & Okada, H. (1987) Eur. J. Biochem. 166, 539-545]. However, the sequence identified in the present study is quite different from the previously reported one. The total length of the PstI--EcoRI fragment of a plasmid pOXN295 containing the xynB gene is 2201 bp from our sequencing, while the length of the fragment in the previous data was 2466 bp. The sequences are similar in the N-terminal (500 bp) and C-terminal (260 bp) regions, but those in the central region are completely different. From the following observations, the previous sequence seems to have no reliable experimental basis. First, the restriction sites observed for pOXN295 are quite different from the sites deduced from the sequence. Second, the amino acid composition deduced from the sequence and the composition identified by amino acid analysis of the purified beta-xylosidase are very different. It is confirmed, on the other hand, that our new sequence agrees well with these experimental data. The enzyme was purified to homogeneity from Bacillus pumilus and Escherichia coli harboring a hybrid plasmid which highly expresses the xynB gene. The molecular mass of the enzyme was estimated to be 190 kDa by high performance gel filtration chromatography using TSK-G3000SW and 56 kDa by SDS/polyacrylamide gel electrophoresis. The pH optimum was 7.0, and the optimum temperature was 40 degrees C. The Vm value was estimated to be 1.23 +/- 0.14 mukat/mg (or p-nitrophenyl beta-D-xyloside) and 0.14 +/- 0.011 mukat/mg (for xylobiose), while Km was estimated to be 3.9 +/- 0.59 mM (for p-nitrophenyl beta-D-xyloside) and 8.9 +/- 1.19 mM (for xylobiose).  相似文献   

13.
L-Glutamic acid decarboxylase (GAD; EC 4.1.1.15) was purified to apparent homogeneity from the brain of the locust Schistocerca gregaria using a combination of chromatofocusing (Mono P) and gel filtration (Superose 12) media. The homogeneity of the enzyme preparation was established by native polyacrylamide gel electrophoresis (PAGE) with silver staining. The molecular weight of the purified enzyme was estimated from native gradient gel electrophoresis and gel filtration chromatography to be 97,000 +/- 4,000 and 93,000 +/- 5,000, respectively. When analysed by sodium dodecyl sulphate-PAGE, the enzyme was found to be composed of two distinct subunits of Mr 51,000 +/- 1,000 and 44,000 +/- 1,500. Tryptic peptide maps of iodinated preparations of these two subunits showed considerable homology, suggesting that the native enzyme is a dimer of closely related subunits. The purified enzyme had a pH optimum of 7.0-7.4 in 100 mM potassium phosphate buffer and an apparent Km for glutamate of 5.0 mM. The enzyme was strongly inhibited by the carbonyl-trapping reagent aminooxyacetic acid with an I50 value of 0.2 microM.  相似文献   

14.
A metallo-endopeptidase, which appears to be an integral membrane protein of rat kidney, was purified to homogeneity by a series of standard chromatographic procedures. This enzyme significantly hydrolyzed human parathyroid hormone [hPTH(1-84)] and a synthetic substrate Suc-Leu-Leu-Val-Tyr-Mec (Suc = succinyl, Mec = 4-methyl-coumarinyl-7-amide). The purified enzyme had apparent molecular masses of 250 kDa on gel filtration, and 88 kDa and 245 kDa on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing and non-reducing conditions, respectively. Its pH optimum for activity was 8.0-8.5 and its isoelectric point was pH 4.9. Its activity was inhibited by EDTA, EGTA and o-phenanthroline, but not by phosphoramidon. The metal-depleted enzyme was reactivated by the addition of metal ions. The enzyme was also inhibited by chymostatin and eglin C, and by thiol compounds. Of the synthetic substrates examined, the enzyme hydrolyzed only Suc-Leu-Leu-Val-Tyr-Mec, one of the synthetic substrates for alpha-chymotrypsin. It did not hydrolyze synthetic substrates with less than four amino acid residues with tyrosine in the P1 position. The enzyme hydrolyzed hPTH and reduced hen egg lysozyme but did not hydrolyze azocasein or [3H]methyl-casein. NH2-terminal amino acid sequence analyses of the degradation products of hPTH(1-84) and reduced hen egg lysozyme by the purified enzyme revealed that the enzyme preferentially cleaved these peptides at peptide bonds flanked by hydrophilic amino acid residues. Amino acid analyses showed that the main degradation products of PTH were hPTH(17-29), hPTH(30-38) and hPTH(74-84). The ability of the enzyme to hydrolyze peptide bonds flanked by hydrophilic amino acid residues and its inability to degrade azocasein distinguish it from several other kidney endopeptidases reported, such as endopeptidase 24.11 and meprin.  相似文献   

15.
Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37 degrees C and 7.0, respectively. The K(m) for phloretin was 13 +/- 3 microM and the k(cat) was 10 +/- 2 s(-1). The enzyme did not transform phloretin-2'-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl(2) to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively.  相似文献   

16.
A gene encoding a new thermostable D-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards D-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards L-amino acid amides, D-amino acid-containing peptides, and NH(2)-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85 degrees C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co(2+) and Mn(2+). The k(cat)/K(m) for D-alaninamide was measured as 544.4 +/- 5.5 mM(-1) min(-1) at 50 degrees C with 1 mM Co(2+).  相似文献   

17.
Glutathione reductase [NAD(P)H:GSSG oxidoreductase EC 1.6.4.2] from cyanobacterium Spirulina maxima was purified 1300-fold to homogeneity by a simple three-step procedure involving ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose, and affinity chromatography on 2',5'-ADP-Sepharose 4B. Optimum pH was 7.0 and enzymatic activity was notably increased when the phosphate ion concentration was increased. The enzyme gave an absorption spectrum that was typical for a flavoprotein in that it had three peaks with maximal absorbance at 271, 370, and 460 nm and a E1%271 of 23.3 Km values were 120 +/- 12 microM and 3.5 +/- 0.9 microM for GSSG and NADPH, respectively. Mixed disulfide of CoA and GSH was also reduced by the enzyme under assay conditions, but the enzyme had a very low affinity (Km 3.3 mM) for this substrate. The enzyme was specific for NADPH. The isoelectric point of the native enzyme at 4 degrees C was 4.35 and the amino acid composition was very similar to that previously reported from other sources. The molecular weight of a subunit under denaturing conditions was 47,000 +/- 1200. Analyses of pure enzyme by a variety of techniques for molecular weight determination revealed that, at pH 7.0, the enzyme existed predominantly as a tetrameric species in equilibrium with a minor dimer fraction. Dissociation into dimers was achieved at alkaline pH (9.5) or in 6 M urea. However, the equilibrium at neutral pH was not altered by NADPH or by disulfide reducing reagents. The Mr and S20,w of the oligomeric enzyme were estimated to be 177,000 +/- 14,000 and 8.49 +/- 0.5; for the dimer, 99,800 +/- 7000 and 5.96 +/- 0.4, respectively. Low concentrations of urea increased the enzymatic activity, but this increase was not due to changes in the proportions of both forms.  相似文献   

18.
Highly purfied beta-galactosidase from fungus Curvularia inaequalis cultural fluid with a specific activity of 50 units per mg of protein was obtained by 2-fold purification of the enzyme, using chromatography on DEAE-cellulose and on hydroxylapatite. The enzyme was found to hydrolyze o-nitrophenyl-beta-D-galactopyranoside (pH optimum of 3.7--4.5) and lactose (pH optimum 3.9--5.3). The isoelectric point was observed at pH 4.4 the temperature optimum was 60 degrees C. The molecular weight (115 000--126 000) and the amino acid composition of the enzyme were determined. Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 0.55-10(-3) M and 4.5-10(-3) M respectively. Disc-electrophoresis in polyacrylamide gel revealed a single band with a specific activity. The homogeneity of the enzyme was found in ultracentrifuge.  相似文献   

19.
Dihydroorotase from Escherichia coli. Purification and characterization   总被引:4,自引:0,他引:4  
Dihydroorotase (4,5-L-dihydroorotate amidohydrolase (EC 3.5.2.3], which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to dihydro-L-orotate, has been purified to homogeneity from an over-producing strain of Escherichia coli. Treatment of 70 g of frozen cell paste produces about 7 mg of pure enzyme, a yield of about 35%. The native molecular weight, determined by equilibrium sedimentation, is 80,900 +/- 4,300. The subunit molecular weight, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 38,400 +/- 2,600, and by amino acid analysis is 41,000. The enzyme is thus a dimer and contains 0.95 +/- 0.08 tightly bound zinc atoms per subunit when isolated by the described procedure, which would remove any loosely bound metal ions. Isoelectric focusing under native conditions yields a major species at isoelectric point 4.97 +/- 0.27 and a minor species at 5.26 +/- 0.27; dihydroorotase activity is proportionately associated with both bands. The enzyme has a partial specific volume of 0.737 ml/g calculated from the amino acid composition and a specific absorption at 278 nm of 0.638 for a 1 mg/ml solution. At 30 degrees C, the Michaelis constant and kcat for dihydro-DL-orotate (at pH 8.0) are 0.0756 mM and 127 s-1, respectively; for N-carbamyl-DL-aspartate (at pH 5.80), they are 1.07 mM and 195 s-1.  相似文献   

20.
The high Km cyclic nucleotide phosphodiesterase of Saccharomyces cerevisiae was purified by an improved procedure. Its amino acid composition is reported. Its pI is 5.85 +/- 0.1. Sedimentation equilibrium analysis of the native enzyme gave Mr = 88,000 +/- 6,000, whilst gel electrophoresis in the presence of dodecyl sulfate gave a molecular weight of 43,000, indicating that the enzyme is a dimer. Preparations of 94 +/- 4% purity contained about 2.4 atoms of zinc/43,000 daltons. Inactivation of the enzyme by 8-hydroxyquinoline was accompanied by removal of about 2 zinc atoms per monomer. Partially inactivated enzyme regained activity during dialysis against zinc, or, with less effect, cobalt salts. 8-Hydroxyquinoline (Ki = 1.1 mM) and 1,10-phenanthroline (Ki = 0.6 mM) were competitive inhibitors. The enzyme was also inhibited by the nonchelating 1,7-and 4,7-phenanthrolines and by thiols and KCN, but not by NaN3. These inhibitors probably act by binding to, but not chelating, enzyme-bound zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号