首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.  相似文献   

2.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the CDP-choline pathway or the methylation pathway. In prokaryotes only the methylation pathway was thought to occur. Recently, however, we could demonstrate (de Rudder, K. E. E., Sohlenkamp, C., and Geiger, O. (1999) J. Biol. Chem. 274, 20011-20016) that a second pathway for phosphatidylcholine biosynthesis exists in Sinorhizobium (Rhizobium) meliloti involving a novel enzymatic activity, phosphatidylcholine synthase, that condenses choline and CDP-diacylglyceride in one step to form PC and CMP. Using a colony autoradiography method we have isolated mutants of S. meliloti deficient in phosphatidylcholine synthase and which are no longer able to incorporate radiolabeled choline into PC. Complementation of such mutants with a sinorhizobial cosmid gene bank, subcloning of the complementing fragment, and sequencing of the subclone led to the identification of a gene coding for a presumptive CDP-alcohol phosphatidyltransferase. Amplification of this gene and its expression in Escherichia coli demonstrates that it codes for phosphatidylcholine synthase. Genomes of some pathogens (Pseudomonas aeruginosa and Borrelia burgdorferi) contain genes similar to the sinorhizobial gene (pcs) for phosphatidylcholine synthase. Although pcs-deficient S. meliloti knock-out mutants show wild type-like growth and lipid composition, they are unable to perform rapid PC biosynthesis that normally is achieved via the phosphatidylcholine synthase pathway in S. meliloti wild type.  相似文献   

3.
Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.  相似文献   

4.
Membrane lipids in most bacteria generally consist of the glycerophospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine (PE). A subset of bacteria also possesses the methylated derivatives of PE, monomethylphosphatidylethanolamine, dimethylphosphatidylethanolamine, and phosphatidylcholine (PC). In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway. In the latter pathway, one of the building blocks for PC formation, choline, is obtained from the eukaryotic host. Under phosphorus-limiting conditions of growth, S. meliloti replaces its membrane phospholipids by membrane-forming lipids that do not contain phosphorus; namely, the sulfolipid sulfoquinovosyl diacylglycerol, ornithine-derived lipids, and diacylglyceryl-N,N,N-trimethylhomoserine. Although none of these phosphorus-free lipids is essential for growth in culture media rich in phosphorus or for the symbiotic interaction with the legume host, they are expected to have major roles under free-living conditions in environments poor in accessible phosphorus. In contrast, sinorhizobial mutants deficient in PC show severe growth defects and are completely unable to form nodules on their host plants. Even bradyrhizobial mutants with reduced PC biosynthesis can form only root nodules displaying reduced rates of nitrogen fixation. Therefore, in the cases of these microsymbionts, the ability to form sufficient bacterial PC is crucial for a successful interplay with their host plants.  相似文献   

5.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesised by either of two pathways, the CDP-choline pathway or the methylation pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of distantly related bacteria such as Rhizobacteria and Spirochetes. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a novel choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, a novel enzymatic activity, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. Surprisingly, genomes of some pathogens (Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) contain genes similar to the sinorhizobial gene for phosphatidylcholine synthase. We, therefore, suggest that the new PC synthase pathway is present in a number of bacteria displaying symbiotic or pathogenic associations with eukaryotes and that the eukaryotic host functions as the provider of choline for this pathway.  相似文献   

6.
7.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes. In addition to this structural function, PC is thought to play a major role in lipid turnover and signalling in eukaryotic systems. In prokaryotes, only some groups of bacteria, among them the members of the family Rhizobiaceae, contain PC. To understand the role of PC in bacteria, we have studied Rhizobium meliloti 1021, which is able to form nitrogen-fixing nodules on its legume host plants and therefore has a very complex phenotype. R. meliloti was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and potential mutants defective in phospholipid N-methyltransferase were screened by using a colony autoradiography procedure. Filters carrying lysed replicas of mutagenized colonies were incubated with S-adenosyl-L-[methyl-14C]methionine. Enzymatic transfer of methyl groups to phosphatidylethanolamine (PE) leads to the formation of PC and therefore to the incorporation of radiolabel into lipid material. Screening of 24,000 colonies for reduced incorporation of radiolabel into lipids led to the identification of seven mutants which have a much-reduced specific activity of phospholipid N-methyltransferase. In vivo labelling of mutant lipids with [14C]acetate showed that the methylated PC biosynthesis intermediates phosphatidylmonomethylethanolamine and phosphatidyldimethylethanolamine are no longer detectable. This loss is combined with a corresponding increase in the potential methyl acceptor PE. These results indicate that PC biosynthesis via the methylation pathway is indeed blocked in the mutants isolated. However, mass spectrometric analysis of the lipids shows that PC was still present when the mutants had been grown on complex medium and that it was present in the mutants in wild-type amounts. In vivo labelling with [methyl-14C]methionine shows that in phospholipid N-methyltransferase-deficient mutants, the choline moiety of PC is not formed by methylation. These findings suggest the existence of a second pathway for PC biosynthesis in Rhizobium.  相似文献   

8.
Phosphatidylcholine (PC) is a ubiquitous membrane lipid in eukaryotes but has been found in only a limited number of prokaryotes. Both eukaryotes and prokaryotes synthesize PC by methylating phosphatidylethanolamine (PE) by use of a phospholipid methyltransferase (Pmt). Eukaryotes can synthesize PC by the activation of choline to form choline phosphate and then CDP-choline. The CDP-choline then condenses with diacylglycerol (DAG) to form PC. In contrast, prokaryotes condense choline directly with CDP-DAG by use of the enzyme PC synthase (Pcs). PmtA was the first enzyme identified in prokaryotes that catalyzes the synthesis of PC, and Pcs in Sinorhizobium meliloti was characterized. The completed release of the Pseudomonas aeruginosa PAO1 genomic sequence contains on open reading frame predicted to encode a protein that is highly homologous (35% identity, 54% similarity) to PmtA from Rhodobacter sphaeroides. Moreover, the P. aeruginosa PAO1 genome encodes a protein with significant homology (39% amino acid identity) to Pcs of S. meliloti. Both the pcs and pmtA homologues were cloned from PAO1, and homologous sequences were found in almost all of the P. aeruginosa strains examined. Although the pathway for synthesizing PC by use of Pcs is functional in P. aeruginosa, it does not appear that this organism uses the PmtA pathway for PC synthesis. We demonstrate that the PC synthesized by P. aeruginosa PAO1 localized to both the inner and outer membranes, where it is readily accessible to its periplasmic, PC-specific phospholipase D.  相似文献   

9.
The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.  相似文献   

10.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

11.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (<20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.  相似文献   

12.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (< 20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.  相似文献   

13.
P. McGraw  S. A. Henry 《Genetics》1989,122(2):317-330
We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.  相似文献   

14.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

15.
Phosphatidylcholine (PC) is a major component of membranes not only in eukaryotes, but also in several bacteria, including Acetobacter. To identify the PC biosynthetic pathway and its role in Acetobacter sp., we have studied Acetobacter aceti IFO3283, which is characterized by high ethanol oxidizing ability and high resistance to acetic acid. The pmt gene of A. aceti, encoding phosphatidylethanolamine N-methyltransferase (Pmt), which catalyzes methylation of phosphatidylethanolamine (PE) to PC, has been cloned and sequenced.

One recombinant plasmid that complemented the PC biosynthesis was isolated from a gene library of the genomic DNA of A. aceti. The pmt gene encodes a polypeptide with molecular mass of either 25125, 26216, or 29052 for an about 27-kDa protein. The sequence of this gene showed significant similarity (44.3% identity in the similar sequence region) with the Rhodobacter sphaeroides pmtA gene which is involved in PE N-methylation. When the pmt gene was expressed in E. coli, which lacks PC, the Pmt activity and PC formation were clearly demonstrated. A. aceti strain harboring an interrupted pmt allele, pmt::Km, was constructed. The pmt disruption was confirmed by loss of Pmt and PC, and by Southern blot analyses. The null pmt mutant contained no PC, but tenfold more PE and twofold more phosphatidylglycerol (PG). The pmt disruptant did not show any dramatic effects on growth in basal medium supplemented with ethanol, but the disruption caused slow growth in basal medium supplemented with acetate. These results suggest that the lack of PC in the A. aceti membrane may be compensated by the increases of PE and PG by an unknown mechanism, and PC in A. aceti membrane is related to its acetic acid tolerance.  相似文献   

16.
Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME.  相似文献   

17.
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding.  相似文献   

18.
Phosphatidylcholine (PC) is a major component of membranes not only in eukaryotes, but also in several bacteria, including Acetobacter. To identify the PC biosynthetic pathway and its role in Acetobacter sp., we have studied Acetobacter aceti IFO3283, which is characterized by high ethanol oxidizing ability and high resistance to acetic acid. The pmt gene of A. aceti, encoding phosphatidylethanolamine N-methyltransferase (Pmt), which catalyzes methylation of phosphatidylethanolamine (PE) to PC, has been cloned and sequenced. One recombinant plasmid that complemented the PC biosynthesis was isolated from a gene library of the genomic DNA of A. aceti. The pmt gene encodes a polypeptide with molecular mass of either 25125, 26216, or 29052 for an about 27-kDa protein. The sequence of this gene showed significant similarity (44.3% identity in the similar sequence region) with the Rhodobacter sphaeroides pmtA gene which is involved in PE N-methylation. When the pmt gene was expressed in E. coli, which lacks PC, the Pmt activity and PC formation were clearly demonstrated. A. aceti strain harboring an interrupted pmt allele, pmt::Km, was constructed. The pmt disruption was confirmed by loss of Pmt and PC, and by Southern blot analyses. The null pmt mutant contained no PC, but tenfold more PE and twofold more phosphatidylglycerol (PG). The pmt disruptant did not show any dramatic effects on growth in basal medium supplemented with ethanol, but the disruption caused slow growth in basal medium supplemented with acetate. These results suggest that the lack of PC in the A. aceti membrane may be compensated by the increases of PE and PG by an unknown mechanism, and PC in A. aceti membrane is related to its acetic acid tolerance.  相似文献   

19.
The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-beta-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process.  相似文献   

20.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号