首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the variations of endogenous cyclic AMP levels in thyroid cells cultured over a period of 7 days in several conditions: in the presence of thyroid-stimulating hormone or dibutyryl cyclic AMP which both promote the aggregation of isolated cells into follicles, and in their absence when cells develop as a typical monolayer. In follicle-forming cells, the cyclic AMP level was found to rise during the first day of culture, then to fall rapidly. In monolayer-forming cells, the cyclic AMP content slightly increases attaining the same level as found in other cells at the fourth day, which remains stable till the seventh day. We have investigated the response of these cells cultured in the presence of dibutyryl cyclic AMP retain the capability of increasing their cyclic AMP concentration whereas monolayer-forming cells do not preserve this quality of thyroid cells.  相似文献   

2.
We have studied the variations of endogenous cyclic AMP levels in thyroid cells cultured over a period of 7 days in several conditions: in the presence of thyroid-stimulating hormone or dibutyryl cyclin AMP which both promote the aggregation of isolated cell into follicles, and in their absence when cells develop as a typical monolayer. In follicle-forming cells, the cyclic AMP level was found to rise during the first day of culture, then to fall rapidly. In monolayer-forming cells, the cyclic AMP content slightly increases attaining the same level as found in other cells at the fourth day, which remains stable till the seventh day. We have investigated the response of these cells to the acute effect of thyroid-stimulating hormone: only cells cultured in the presence of dibutyryl cyclic AMP retain the capability of increasing their cycli AMP concentration whereas monolayer-forming cells do not preserve this quality of thyroid cells.  相似文献   

3.
We have developed primary cultures of epithelial follicular cells from normal human thyroid tissue, in low serum or serum-free conditions, which allow the in vitro experimentation of the hormonal control of growth. In sharp contrast with several previous studies, thyrotropin (100 microU/ml) potently stimulated the DNA synthesis and proliferation of these cells. These effects were partly reproduced by cyclic AMP agonists. Human thyroid cell proliferation was also increased by serum, epidermal growth factor and a tumor promoting phorbol ester.  相似文献   

4.
Three cascades activate thyroid cell proliferation: the EGF-protein tyrosine kinase pathway, the phorbol ester-protein kinase C pathway and the thyrotropin-cyclic AMP pathway. While the first 2 cascades converge early, they remain distinct from the cyclic AMP cascade until very late in G1. The cyclic AMP cascade is characterized by an early and transient expression of c-myc, which may explain why it induces proliferation and differentiation expression. Constitutive activation of this cascade causes growth and hyperfunction, ie, hyperfunctioning adenomas. The various possible defects that could lead to such a constitutive activation are discussed.  相似文献   

5.
T Emoto  K Kasai  M Hiraiwa  S Shimoda 《Life sciences》1988,42(22):2249-2257
In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E1 or E2 (PGE1 or PGE2) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10(-9) M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.  相似文献   

6.
Thyroidectomy is known to enhance fat cell phosphodiesterase activity; as a result, the response to lipolytic hormones is markedly reduced. Thyroidectomy also stimulates overall lipogenesis and the uptake of glucose: the present experiments investigated whether there was a correlation between cyclic AMP and glucose uptake. The parameter measured was the transport and phosphorylation (uptake) of deoxy-D-glucose in the presence of two modifiers of the cyclic AMP pool: phosphodiesterase inhibitors and the analogue, dibutyryl cyclic AMP. The inhibition by methylxanthines and dibutyryl cyclic AMP of deoxy-D-glucose uptake observed, was the same in fat cells from normal and thyroidectomized rats: the latter nonetheless still maintained their enhanced glucose uptake. It was therefore concluded that thyroid hormones and cyclic AMP control this step by different, separate pathways. Insulin, well known for its lipogenic effect, enhanced deoxy-D-glucose uptake in fat cells from both normal and thyroidectomized rats to the same extent (about 40%). An additive effect of thyroidectomy and insulin on glucose uptake was thus demonstrated. These results imply that glucose uptake in the adipocyte is controlled by at least three factors: thyroid hormones, cyclic AMP and insulin, each of which can act independently. Maximum glucose uptake is achieved in the presence of a combination of low concentrations of cyclic AMP, of insulin, and in the absence of thyroid hormones.  相似文献   

7.
The effect of TSH (100mU/ml) and norepinephrine (100 muM) on the cyclic AMP levels was studied in 10 human normal tissues, 10 thyroid adenomas and 4 thyroid carcinomas (3 papillary and 1 follicular). Normal tissues responded to TSH with a marked elevation of the cyclic AMP level. Response patterns of 10 thyroid adenomas to TSH were variable; the patterns of 6 cases resembled those of normal tissues, 3 responded mildly, and one had no response to TSH. Thyroid carcinomas had a higher basal level of cyclic AMP than those of normal tissues, although they responded only slightly to TSH. Two among 4 thyroid carcinomas had no response to TSH. Norepinephrine stimulated the accumulation of cyclic AMP in 4 thyroid adenomas and 3 thyroid carcinomas, while it had little effect on normal tissues. Responses to norepinephrine was observed only in thyroid tumors, although they had low response to TSH. It is suggested from these results that tumor cells originating from thyroid follicular cells have a modified response to hormones due to neoplastic alterations.  相似文献   

8.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

9.
We have shown that TSH increases PG levels in isolated bovine thyroid cells. We now report that TSH also increases PG levels in rat and mouse thyroid, and that these effects may be mediated via cyclic AMP. PG and cyclic AMP levels in intact rat and mouse thyroid lobes were measured by radioimmunoassay. During 60-min incubations at 37°C, 25 mU/ml TSH effected a 75–83% increase in PGE1 and PGF ”equivalents“ in rat thyroid; parallel measurements of endogenous cyclic AMP in these intact thyroid lobes revealed that maximal TSH-induced increase in cyclic AMP also required 60-min incubations. In mouse thyroid, 5 mU/ml TSH increased PGE1 and PGF levels 38–82% above basal; this TSH effect was evident within 15 min of incubation, thus mimicking the time-course of TSH-induced increase in mouse thyroid cyclic AMP. Exogenous DBcAMP, 0.5 to 3 mM, effected a dose-related increase in mouse thyroid PG levels. The stimulatory effects of both TSH and DBcAMP on mouse thyroid PG levels were abolished by aspirin and indomethacin. These studies suggest that TSH-induced increase in endogenous PG levels in thyroid may be mediated by cyclic AMP.  相似文献   

10.
Addition of histamine (0.1 mM) to guinea-pig hippocampal slices causes a 20- to 30-fold increase in the accumulation of cyclic AMP compared with basal levels. This accumulation represents a balance between cyclic AMP production by adenylate cyclase and cyclic AMP breakdown mediated by phosphodiesterase (PDE). However, brain tissues are known to contain several different PDE isozymes. To determine which are involved in this response to histamine, the effect of isozyme-specific PDE inhibitors on cyclic AMP accumulation was examined in the hippocampus. MB 22948 (0.1 mM), an inhibitor of PDEs I and II, had no significant effect on the response to either 1 microM or 0.1 mM histamine. SKF 94120 (0.1 mM), a PDE III inhibitor, was also without effect in the presence of 1 microM histamine, although with 0.1 mM histamine, it caused a weak (1.25-fold compared with control), but statistically significant, enhancement of cyclic AMP accumulation. However, both rolipram (0.1 mM), a PDE IV inhibitor, and 3-isobutyl-1-methylxanthine (0.1 or 1 mM), an inhibitor of all forms of PDE, significantly increased cyclic AMP accumulation (2.8- to 6.5-fold compared with controls), and the relative size of this effect decreased with increasing histamine concentration. It is concluded that PDE IV is the main PDE isozyme involved in cyclic AMP turnover in guinea-pig hippocampal slices responding to histamine.  相似文献   

11.
N Kamech  R Seif    D Pantaloni 《Journal of virology》1987,61(5):1546-1551
Elevated exogenous and intracellular levels of cyclic AMP could totally block proliferation of polyomavirus (PyV) transformants derived from rat 3T3 cells without affecting proliferation of normal cells or simian virus 40 (SV40)-induced transformants. Concanavalin A (ConA) had the opposite effect; it could totally block proliferation of both normal cells and SV40 transformants but reduced proliferation of PyV transformants only twofold. Adenylate cyclase was threefold less active in membranes of PyV transformants, and the number of ConA receptors was similar to that of normal cells. Proliferating PyV transformants contained threefold less cyclic AMP than did proliferating SV40 transformants. The sensitivity to cyclic AMP did not correlate with the degree of transformation: cells transformed by Rous sarcoma virus and tumor cells derived from SV40 transformants were not sensitive to cyclic AMP. The differential effect of cyclic AMP and ConA on proliferation was probably due to the activity of an intact middle t protein. The presence of both large T and small t together with middle t was also required for cyclic AMP sensitivity.  相似文献   

12.
The role of the two different isozymes of the cAMP-dependent protein kinase is still unclear. We have investigated the potential roles for each isozyme in dog thyroid cells, a model in which the function, expression of differentiation and proliferation are positively regulated by thyrotropin acting through cyclic AMP. The dog thyroid contains both type I and type II cAMP-dependent protein kinases. These isozymes were selectively activated in vitro by type-I-directed and type-II-directed analog pairs. In thyroid slices, both type-I directed and type II-directed analog pairs synergistically activated thyroid hormone synthesis, as measured by incorporation of 131I into proteins and thyroid hormone secretion as determined by the release of butanol-extractable 131I. In primary cultures of dog thyroid cells both isozyme-directed analog pairs synergistically enhanced iodide trapping, a marker of differentiation, and DNA synthesis, as measured by the percentage of cells incorporating [3H]thymidine into their nuclei. However, DNA synthesis was more sensitive to type-I-directed pairs. The results demonstrate that both cAMP-dependent protein kinase isozymes can mediate the action of cAMP on function, differentiation expression and cell proliferation in dog thyroid cells.  相似文献   

13.
Cat thyroid slices were studied to investigate their responsiveness to thyrotropin stimulation of cyclic AMP accumulation. Ovine and bovine thyrotropin, in the presence of 2.5 mM aminophylline, induced a dose-dependent increase in the cyclic AMP content of cat thyroid tissue. Half-maximal stimulation of cyclic AMP accumulation was obtained at a thyrotropin concentration of 1-2 mU/ml. The maximal effect of thyrotropin was observed at 10 mU/ml, and was associated with a mean 77 +/- 19-fold increase in thyroidal cyclic AMP. Preincubation of cat thyroid tissue for 2 h with 50 micron NaI resulted in an impairment in the subsequent ability of thyrotropin to enhance cyclic AMP accumulation, without altering the level of cyclic AMP in tissues not exposed to the hormone. Preincubation alone was without effect on thyrotropin stimulation of cyclic AMP, and the inhibitory effect of iodide was prevented by addition of 3 mM methimazole to the preincubation medium. In addition, the time course of thytrotropin stimulation of cyclic AMP accumulation in cat thyroid slices was not significantly altered by the preincubation with excess iodide. These studies provide additional evidence that excess iodide inhibits the adenylate cyclase-cyclic AMP system in thyroid tissue.  相似文献   

14.
Wild-type Cloudman S91 melanoma cells have a retarded rate of division when agents which raise cyclic AMP levels such as melanotropin, protaglandin E1, or cholera toxin are supplemented to the culture medium. A mutant cell line was isolated which had the opposite response, i.e., the mutant grew very slowly unless agents which raised cyclic AMP levels were present (Pawelek et al., '75a). In this report evidence is presented indicating that the molecular basis for the mutant phenotype resides in the major cyclic AMP-dependent protein kinase found in the cells. The mutant kinase had increased thermolability and an elevated activation constant for cyclic AMP over the corresponding wild-type kinase. It is proposed that the elevated requirement for cyclic AMP for the proliferation of cAdep cells is related to the elevated activation constant of the kinase, suggesting that the kinase is a positive regulator of proliferation in Cloudman S91 cells.  相似文献   

15.
Thyroid cells from euthyroid patients with Graves' disease were cultured in a chemically defined medium. The cells preserved the ability to respond to TSH with 8-fold increase in cyclic AMP concentration. This cyclic AMP response to TSH was diminished by prior exposure of cells to TSH. The decrease in cyclic AMP response to TSH induced to TSH was reversible, was not associated with a similar decrease to cyclic AMP response to PGE1, and could not be attributed to increased phosphodiesterase activity or to decreased adenyl cyclase activity. The partial resistence to TSH stimulation of thyroid cells previously exposed to TSH may be due to changes in the TSH receptor, possibly caused by TSH itself.  相似文献   

16.
Two-dimensional, high-resolution electrophoretic technique of O'Farrell has been adapted to the analysis of thyroid phosphorylated proteins. Proteins were extracted from dog thyroid slices which had been incubated in the presence of [32P]phosphate with thyrotropin or with different agents which enhance the intracellular accumulation of cyclic AMP. About 350 phosphorylated polypeptides have been separated. Thyrotropin stimulates the phosphorylation of at least eight of these polypeptides. An increase in the phosphorylation of the same polypeptides was observed was observed when dog thyroid slices were incubated with dibutyryl adenosine 3':5'-monophosphate, cholera toxin or prostaglandin E1 instead of thyrotropin. Our results confirm that most of dog thyroid protein phosphorylation is independent of cyclic AMP. They offer a first link between the action of cyclic AMP on protein kinase and the physiological effects of thyrotropin. They strongly substantiate the hypothesis that most thyrotropin effects are mediated by cyclic AMP.  相似文献   

17.
Studies were conducted to determine whether thyroid-stimulating hormone (TSH; thyrotropin), a hormone known to increase cytosol concentrations of cyclic AMP, also stimulates the formation of inositol phosphates in thyroid cells. TSH and noradrenaline both stimulated [3H]inositol phosphate formation in a concentration-dependent manner in the rat thyroid cell line, FRTL-5 cells, which had been prelabelled with [3H]inositol. The threshold concentration of TSH required to stimulate inositol phosphate formation was more than 20 munits/ml, which is approx. 10(3)-fold greater than that required for cyclic AMP accumulation and growth in these cells. We also demonstrate that membranes prepared from FRTL-5 cells possess a guanine nucleotide-activatable polyphosphoinositide phosphodiesterase, which suggests that activation of inositide metabolism in these cells may be coupled to receptors by the G-protein, Gp. Our findings suggest that two second-messenger systems exist to mediate the action of TSH in the thyroid.  相似文献   

18.
Negative control on the thyroid cyclic AMP system has been studied. The increase of cyclic AMP levels induced by TSH in dog thyroid slices and its consequent secretion were inhibited by norepinephrine. This effect was different from the previously described activation of cyclic AMP disposal by acetylcholine: it was not calcium-dependent, was observed in the presence of isobutyl methylxanthine and was not inhibited by atropine. The inhibitory action of norepinephrine was abolished by phentolamine but not by L-propranolol. Clonidine and epinephrine also markedly inhibited the elevation of cyclic AMP levels, but phenylephrine did not. The inhibitory effect of norepinephrine and clonidine was abolished by yohimbine but not by prazosin. These results suggest that the effect of adrenergic agents on dog thyroid follicular cells is mediated by alpha 2-receptors. Similar results were obtained on dog thyroid adenylate cyclase activity: norepinephrine diminished the activation of adenylate cyclase induced by TSH, in a sodium-dependent process. This inhibition was abolished by phentolamine and yohimbine, but not by L-propranolol and and prazosin. This shows that the negative alpha 2-adrenergic effect bears directly on adenylate cyclase.  相似文献   

19.
The cyclic AMP response of cultured hog thyroid cells to acute thyrotropin stimulation was shown to be under a dual regulatory control by thyrotropin: both positive and negative regulation have been described. When added to the culture medium, gelatin (0.25%) promoted the reorganization of the cells into follicle-like structures, as does thyrotropin. Unlike thyrotropin, gelatin did not induce an increase in intracellular cyclic AMP but enhanced the acute cyclic AMP response to thyrotropin in cells cultured in gelatin-containing medium. When both gelatin and thyrotropin were present, the positive effect of low concentrations of hormone (less than 50 μU/ml) was increased whereas the refractory process observed in the presence of higher concentrations of hormone (greater than 50 μU/ml) was unchanged. These effects of gelatin might be mediated by interaction of the denatured collagen molecules with external proteins of the plasma membrane of thyroid cells.  相似文献   

20.
The cyclic AMP response of cultured hog thyroid cells to acute thyrotropin stimulation was shown to be under a dual regulatory control by thyrotropin: both positive and negative regulation have been described. When added to the culture medium, gelatin (0.25%) promoted the reorganization of the cells into folicle-like structures, as does thyrotropin. Unlike thyrotropin, gelatin did not induce an increase in intracellular cyclic AMP but enhanced the acute cyclic AMP response to thyrotropin in cells cultured in gelatin-containing medium. When both gelatin and thyrotropin were present, the positive effect of low concentrations of hormone (less than 50 microU/ml) was increased whereas the refractory process observed in the presence of higher concentrations of hormone (greater than 50 microU/ml) was unchanged. These effects of gelatin might be mediated by interaction of the denatured collagen molecules with external proteins of the plasma membrane of thyroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号