首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here the use of cysteine substitution mutants in the Alzheimer disease amyloid plaque peptide Abeta-(1-40) to probe amyloid fibril structure and stabilization. In one approach, amyloid fibrils were grown from Cys mutant peptides under reducing conditions and then challenged with an alkylating agent to probe solvent accessibility of different residues in the fibril. In another approach, monomeric Cys mutants, either in the thiol form or modified with iodoacetic acid or methyl iodide, were grown into amyloid fibrils, and the equilibrium position at the end of the amyloid formation reaction was quantified by determining the concentration of monomeric Abeta. The DeltaG values of fibril elongation obtained were then compared in order to provide information on the environment of each residue side chain in the fibril. In general, Cys residues in the N and C termini of Abeta-(1-40) were not only accessible to alkylation in the fibril state but also, when modified in the monomeric state, did not greatly impact fibril stability; these observations were consistent with previous indications that these portions of the peptide are not part of the amyloid core. In contrast, residues 16-19 and 31-34 were not only uniformly inaccessible to alkylation in the fibril state, but their modification with the negatively charged carboxymethyl group in monomeric Abeta also destabilized fibril elongation, confirming other data showing that these segments are likely packed into a hydrophobic amyloid core. Residues 20, 30, and 35, flanking these implicated beta-sandwich regions, are accessible to alkylation in the fibril indicating a location in solvent exposed structure.  相似文献   

2.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

3.
Amyloid-β protein (Aβ) is the principal component of the neuritic plaques found in Alzheimer's disease. The predominant Aβ morphology in the plaques is fibrillar which has prompted substantial in vitro work to better understand the molecular organization of Aβ fibrils. In the current study, tryptophan substitutions were made at Aβ(1-40) position 19 (F19W) or 20 (F20W) to ascertain environmental differences between the two residues in the fibril structure. Kinetic studies revealed similar rates of fibril formation between Aβ(1-40) F19W and F20W and both peptides formed typical amyloid fibril structures. Aβ(1-40) F19W fibrils displayed a significant tryptophan fluorescence blue-shift in λ(max) (33nm) compared to monomer while Aβ(1-40) F20W fibrils had a much smaller shift (9nm). Fluorescence quenching experiments with water-soluble acrylamide and KI demonstrated that both W19 and W20 were much less accessible to quenching in fibrils compared to monomer. Lipid-soluble TEMPO quenched the fluorescence of Aβ(1-40) F19W fibrils more effectively than F20W fibrils in agreement with the fluorescence blue-shift results. These findings demonstrate distinct environments between Aβ(1-40) residues 19 and 20 fibrils and indicate that while W20 accessibility is compromised in Aβ fibrils it resides in a much less hydrophobic environment than W19.  相似文献   

4.
We describe here an alanine scanning mutational analysis of the Abeta(1-40) amyloid fibril monitored by fibril elongation thermodynamics derived from critical concentration values for fibril growth. Alanine replacement of most residues in the amyloid core region, residues 15-36, leads to destabilization of the elongation step, compared to wild-type, by about 1kcal/mol, consistent with a major role for hydrophobic packing in Abeta(1-40) fibril assembly. Where comparisons are possible, the destabilizing effects of Ala replacements are generally in very good agreement with the effects of Ala replacements of the same amino acid residues in an element of parallel beta-sheet in the small, globular protein Gbeta1. We utilize these Ala-WT DeltaDeltaG values to filter previously described Pro-WT DeltaDeltaG values, creating Pro-Ala DeltaDeltaG values that specifically assess the sensitivity of a sequence position, in the structural context of the Abeta fibril, to replacement by proline. The results provide a conservative view of the energetics of Abeta(1-40) fibril structure, indicating that positions 18-21, 25-26, and 32-33 within amyloid structure are particularly sensitive to the main-chain disrupting effects of Pro replacements. In contrast, residues 14-17, 22, 24, 27-31, and 34-39 are relatively insensitive to Pro replacements; most N-terminal residues were not tested. The results are discussed in terms of amyloid fibril structure and folding energetics, in particular focusing on how the data compare to those from other structural studies of Abeta(1-40) amyloid fibrils grown in phosphate-buffered saline at 37 degrees C under unstirred ("quiescent") conditions.  相似文献   

5.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

6.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

7.
Electron paramagnetic resonance spectroscopy analysis of 19 spin-labeled derivatives of the Alzheimer's amyloid beta (Abeta) peptide was used to reveal structural features of amyloid fibril formation. In the fibril, extensive regions of the peptide show an in-register, parallel arrangement. Based on the parallel arrangement and side chain mobility analysis we find the amyloid structure to be mostly ordered and specific, but we also identify more dynamic regions (N and C termini) and likely turn or bend regions (around residues 23-26). Despite their different aggregation properties and roles in disease, the two peptides, Abeta40 and Abeta42, homogeneously co-mix in amyloid fibrils suggesting that they possess the same structural architecture.  相似文献   

8.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

9.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

10.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel beta-sheet structure, and subsequently, was further refined for Abeta(1-40) to be cross beta-sheet with double layered in register parallel beta-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel beta-sheet structure has been reported to short fragments of Abeta-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

11.
Several proteins and peptides that can convert from alpha-helical to beta-sheet conformation and form amyloid fibrils, including the amyloid beta-peptide (Abeta) and the prion protein, contain a discordant alpha-helix that is composed of residues that strongly favor beta-strand formation. In their native states, 37 of 38 discordant helices are now found to interact with other protein segments or with lipid membranes, but Abeta apparently lacks such interactions. The helical propensity of the Abeta discordant region (K16LVFFAED23) is increased by introducing V18A/F19A/F20A replacements, and this is associated with reduced fibril formation. Addition of the tripeptide KAD or phospho-L-serine likewise increases the alpha-helical content of Abeta(12-28) and reduces aggregation and fibril formation of Abeta(1-40), Abeta(12-28), Abeta(12-24), and Abeta(14-23). In contrast, tripeptides with all-neutral, all-acidic or all-basic side chains, as well as phosphoethanolamine, phosphocholine, and phosphoglycerol have no significant effects on Abeta secondary structure or fibril formation. These data suggest that in free Abeta, the discordant alpha-helix lacks stabilizing interactions (likely as a consequence of proteolytic removal from a membrane-associated precursor protein) and that stabilization of this helix can reduce fibril formation.  相似文献   

12.
Our previous studies have demonstrated that perlecan and perlecan-derived glycosaminoglycans (GAGs) not only bind beta-amyloid protein (Abeta) 1-40 and 1-42, but are also potent enhancers of Abeta fibril formation and stabilize amyloid fibrils once formed. However, it was not determined which moieties in perlecan heparan sulfate GAG chains may be responsible for the observed effects and whether other GAGs were also capable of a similar enhancement of Abeta fibril formation as observed with perlecan GAGs. In the present study, thioflavin T fluorometry (over a 1-week period) was used to extend our previous studies and to test the hypothesis that the sulfate moiety is critical for the enhancing effects of heparin/heparan sulfate GAGs on Abeta 1-40 fibrillogenesis. This hypothesis was confirmed when removal of all sulfates from heparin (i.e., completely desulfated N-acetylated heparin) led to a complete loss in the enhancement of Abeta fibrillogenesis as demonstrated in both thioflavin T fluorometry and Congo red staining studies. On the other hand, removal of O-sulfate from heparin (i.e., completely desulfated N-sulfated heparin), and to a lesser extent N-sulfate (i.e., N-desulfated N-acetylated heparin), resulted in only a partial loss of the enhancement of Abeta 1-40 fibril formation. These studies indicate that the sulfate moieties of GAGs are critical for enhancement of Abeta amyloid fibril formation. In addition, other sulfated molecules such as chondroitin-4-sulfate, dermatan sulfate, dextran sulfate, and pentosan polysulfate all significantly enhanced (greater than twofold by 3 days) Abeta amyloid fibril formation. These latter findings indicate that deposition and accumulation of other GAGs at sites of Abeta amyloid deposition in Alzheimer's disease brain may also participate in the enhancement of Abeta amyloidosis.  相似文献   

13.
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and Tg2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged Tg mice crossed the blood-brain barrier and bound plaques. When fed to aged Tg2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.  相似文献   

14.
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.  相似文献   

15.
Previously, we found that amyloid beta-protein (Abeta)1-42 exhibits neurotoxicity, while Abeta1-40 serves as an antioxidant molecule by quenching metal ions and inhibiting metal-mediated oxygen radical generation. Here, we show another neuroprotective action of nonamyloidogenic Abeta1-40 against Abeta1-42-induced neurotoxicity in culture and in vivo. Neuronal death was induced by Abeta1-42 at concentrations higher than 2 microm, which was prevented by concurrent treatment with Abeta1-40 in a dose-dependent manner. However, metal chelators did not prevent Abeta1-42-induced neuronal death. Circular dichroism spectroscopy showed that Abeta1-40 inhibited the beta-sheet transformation of Abeta1-42. Thioflavin-T assay and electron microscopy analysis revealed that Abeta1-40 inhibited the fibril formation of Abeta1-42. In contrast, Abeta1-16, Abeta25-35, and Abeta40-1 did not inhibit the fibril formation of Abeta1-42 nor prevent Abeta1-42-induced neuronal death. Abeta1-42 injection into the rat entorhinal cortex (EC) caused the hyperphosphorylation of tau on both sides of EC and hippocampus and increased the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the ipsilateral EC, which were prevented by the concurrent injection of Abeta1-40. These results indicate that Abeta1-40 protects neurons from Abeta1-42-induced neuronal damage in vitro and in vivo, not by sequestrating metals, but by inhibiting the beta-sheet transformation and fibril formation of Abeta1-42. Our data suggest a mechanism by which elevated Abeta1-42/Abeta1-40 ratio accelerates the development of Alzheimer's disease (AD) in familial AD.  相似文献   

16.
Alzheimer's disease is characterized by amyloid deposits in the parenchyma and vasculature of the brain. The plaques are mainly composed of amyloid beta (Abeta) peptides ending in residues 40 and 42. Novel longer Abeta peptides were found in brain homogenates of mouse models of Alzheimer's disease and human brain tissue of patients carrying the familial amyloid precursor protein V717F mutation. The biophysical characteristics of these longer Abeta peptides and their role in plaque formation are not understood. We chose to focus our studies on Abeta peptides ending in residues Ile45, Val46 and Ile47 as these peptides were identified in human brain tissue. A combination of circular dichroism and electron microscopy was used to characterize the secondary and tertiary structures of these peptides. All three longer Abeta peptides consisted mainly of a beta-sheet secondary structure. Electron microscopy demonstrated that these beta-structured peptides formed predominantly amorphous aggregates, which convert to amyloid fibres over extended time periods. As these longer peptides may act as seeds for the nucleation of fibrils composed predominantly of shorter amyloid peptides, these interactions were studied. All peptides accelerated the random to beta-structural transitions and fibril formation of Abeta40 and 42.  相似文献   

17.
The effects of oligopeptides on the secondary structures of Abeta and NAC, a fragment of alpha-synuclein protein, were studied by circular dichroism (CD) spectra. The effects of oligopeptides on the amyloid fibril formation were also studied by fluorescence spectra due to thioflavine-T. The oligopeptides were composed of a fragment of Abeta or NAC and were interposed by acidic or basic amino acid residues. The peptide, Ac-ELVFFAKK-NH2, which involved a fragment Leu-Val-Phe-Phe-Ala at Abeta(17-21), had no effect on the secondary structures of Abeta(1-28) in 60% or 90% trifluoroethanol (TFE) solutions at both pH 3.2 and pH 7.2. However, it showed pronounced effects on the secondary structure of Abeta(1-28) at pH 5.4. The Ac-ELVFFAKK-NH2 reduced the alpha-helical content, while it increased the beta-sheet content of Abeta(1-28). In phosphate buffer solutions at pH 7.0, Ac-ELVFFAKK-NH2 had little effect on the secondary structures of Abeta(1-28). However, it accelerated amyloid fibril formation when monitored by fluorescence spectra due to thioflavine-T. On the other hand, LPFFD, a peptide known as a beta-sheet breaker, caused neither an appreciable extent of change in the secondary structure nor amyloid fibril formation in the same buffer solution. The peptide, Ac-ETVK-NH2, which involved a fragment Thr-Val at NAC(21-22), had no effect on the secondary structure of NAC in 90% TFE and in isotonic phosphate buffer. However, Ac-ETVK-NH2 in water with small amounts of NaN3 and hexafluoroisopropanol greatly increased the beta-sheet content of NAC after standing the solution for more than 1 week. Interestingly, in this solution. Ac-ETVK-NH2, accelerated the fibril formation of NAC. It was concluded that an oligopeptide that involves a fragment of amyloidogenic proteins could be a trigger for the formation of amyloid plaques of the proteins even when it had little effect on the secondary structures of the proteins as monitored by CD spectra for a short incubation time.  相似文献   

18.
The 40 S heterogeneous nuclear ribonucleoprotein (hnRNP) particles from HeLa cells reveal tryptophan fluorescence with a bi-exponential decay, indicating that only a few of the 'core' proteins contain tryptophan residues. The presence of tryptophan residues distinguishes hnRNP particles from nucleosomes, with which they otherwise share a number of properties. This difference, however, is not essential for protein-RNA binding, as the fluorescence decay remains unchanged when hnRNP particles are dissociated into protein and RNA. However, the Stern-Volmer quenching constant is doubled upon salt dissociation, i.e. tryptophan residues become more accessible to solvent. Thus tryptophan quenching is a useful parameter for monitoring protein-protein interactions in hnRNP particles.  相似文献   

19.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

20.
A signature feature of Alzheimer’s disease is the accumulation of plaques, composed of fibrillar amyloid-β protein (Aβ), in the brain parenchyma. Structural models of Aβ fibrils reveal an extensive β-sheet network with a hydrophobic core extending throughout the fibril axis. In this study, phenylalanines in the Aβ(1-40) sequence were substituted with tryptophan residues at either position 4 (F4W) or 19 (F19W) to probe the fibril environment. The F4W substitution did not alter self-assembly kinetics, while the F19W change slightly lengthened the lag phase without hindering fibril formation. The tryptophan fluorescence of Aβ(1-40) F19W, but not Aβ(1-40) F4W, underwent a marked blue shift during fibril formation and this shift was temporally correlated with thioflavin T binding. Isolated Aβ(1-40) F19W fibrils exhibited the largest fluorescence blue shifts consistent with W19 insertion into the Aβ(1-40) fibril inner core and direct probing of the substantially hydrophobic environment therein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号