首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogues of glycerol in which each of the three hydroxy groups is successively replaced by fluorine or hydrogen have been examined as substrates or inhibitors of glycerol kinase (Candida mycoderma) to assess the ability of fluorine to mimic a substrate hydroxy group in enzyme-analogue interactions. The four diols resulting from replacement of the hydroxy groups at C-1 or C-2 of sn-glycerol by fluorine or hydrogen are weak substrates. Similar substitution of the C-3 hydroxy group gives compounds which act as competitive inhibitors of glycerol or dihydroxyacetone phosphorylation but show no activity as substrates. Comparison of the steady-state kinetic parameters of the corresponding analogues shows that replacement of a hydroxy group by either fluorine or hydrogen leads to compounds with similar activity in this system. A convenient synthesis of (+)-propane-1,2-diol is described.  相似文献   

2.
The biosynthesis of starch was investigated in the reaction catalyzed by plant alpha(1 leads to 4)-glucan phosphorylase using alpha-D-glucopyranosyl phosphate and its deoxy analogues as substrates. It was found that the hydroxyl groups at the positions C-2, C-3, C-4 and C-6 in the glucose moiety of the molecule of alpha-D-glucopyranosyl phosphate are not essential for its substrate properties in the transglycosylic reaction. The affinity of plant (alpha(1 leads to 4)-glucan phosphorylase and the rate of hexose incorporation into alpha(1 leads to 4)-glucan decreases in the following sequence: alpha-D-glucopyranosyl phos-phosphate, 2-deoxy-, 6-deoxy, 4-deoxy, and 3-deoxy-alpha-D-glucopyranosyl phosphate. The deoxyglucosyl analogues of alpha-D-glucosylpyranosyl phosphate act as competitive inhibitors on the elongation reaction of the alpha(1 leads to 4) chains of starch. It was found that more than one residue of 2-deoxy-D-glucose or 6-deoxy-D-glucose can be incorporated into the nonreducing terminus of alpha(1 leads to 4)-glucan chains of starch.  相似文献   

3.
The stereochemical course of the formation of the alkyl ether bond in alkyl ether lipids was investigated through the synthesis of stereospecifically labeled acyl R- or S-[1-3H]dihydroxyacetone 3-phosphate (DHAP) starting from L-glyceraldehyde. It was demonstrated directly that the formation of the alkyl ether bond results in the stereospecific exchange of the pro-R C-1 hydrogen of DHAP with a proton of water. The configuration of the hydrogen that is retained on C-1 after formation of the alkyl ether bond was also investigated. The alkyl ether lipid was degraded, and the DHAP backbone isolated as glycerol, converted to DHAP via glycerol 3-phosphate and treated with either aldolase or triose phosphate isomerase. The results demonstrated that the retained hydrogen on C-1, which was pro-S in the starting substrate, was pro-S in the product alkyl ether.  相似文献   

4.
D-Glucal and D-galactal were converted into the corresponding 2-deoxy-D-hexoses by β-D-glucosidase and β-D-galactosidase, respectively. The enzymic hydration of D-glucal compared to that of D-galactal occured at a faster rate and also yielded a byproduct of yet unknown structure. In the presence of glycerol as acceptor, D-glucal as well as D-galactal formed glyceryl 2-deoxy-β-D-glycosides. In this case also D-glucal yielded two byproducts which, according to preliminary investigations, seem to be glyceryl pseudoglucal derivatives. The enzymic hydration is irreversible. Glyceryl 2-deoxy-β-D-lyxo-hexopyranoside was hydrolyzed by β-D-galactosidase to give glycerol and 2-deoxy-D-lyxo-hexose. The mechanism of the enzymic hydration and glycosylation of glycals is discussed.  相似文献   

5.
Hepatocytes were isolated from female rats and incubated with [1,1,3,3-2H4]glycerol or [2-2H]glycerol. The deuterium excess in phosphatidylcholines, sn-glycerol 3-phosphate and other organic acids was determined by g.l.c./mass spectrometry. The unlabelled fraction of the major phosphatidylcholines decreased exponentially, and the turnover was not changed by the presence of ethanol. The relative contribution of the two deuterated glycerols was about the same in the major phosphatidylcholine as in sn-glycerol 3-phosphate, indicating that formation by acylation of dihydroxyacetone phosphate is insignificant. [1,1,3,3-2H4]Glycerol had lost deuterium to a larger extent when it was incorporated in the phosphatidylcholine than when it was incorporated in sn-glycerol-3-phosphate, indicating that the phosphatidylcholines are formed from a separate pool of sn-glycerol 3-phosphate. Deuterium at C-2 was transferred between sn-glycerol 3-phosphate molecules to about 25%. Ethanol decreased the extent of deuterium transfer, the extent of glycerol uptake and the loss of deuterium at C-1 and C-3 in sn-glycerol 3-phosphate. The results indicate that the oxidation to dihydroxyacetone phosphate was inhibited by the NADH formed during ethanol oxidation. [2-2H]Glycerol also labelled an alcohol dehydrogenase substrate, malate and lactate, indicating oxidation of sn-glycerol 3-phosphate in the cytosol. The two acids appeared to be formed in reductions with different pools of NADH.  相似文献   

6.
In the course of a half-reaction of enzymic transamination, the aldimine adduct formed between the coenzyme pyridoxal 5'-phosphate and the amino acid substrate tautomerizes to the ketimine intermediate which is then hydrolyzed to the oxo acid product and the pyridoxamine 5'-phosphate form of the enzyme. In the reverse half-reaction the tautomerization is initiated by the removal of a proton from the pro-S position at C-4' of the PMP moiety of the ketimine intermediate. The present study investigates the question whether the pro-S hydrogen at C-4' of PMP is labilized by its active site environment independently of the formation of the ketimine intermediate, i.e. in the absence of substrate. Reconstitution of apoaspartate aminotransferase (mitochondrial isoenzyme from chicken) with [4'-3H] PMP results indeed in a stereospecific exchange of pro-S 3H with solvent water. The exchange follows first order kinetics (t 1/2 = 23 min at pH 7.5 and 25 degrees C). Unbound PMP showed no measurable exchange. Rigorous control experiments excluded the possibility that the observed exchange was due to a transamination reaction of the enzyme with contaminating oxo acid substrates. The newly observed stereospecific exchange reaction allows to investigate the acid/base properties of C-4' and the modulating effects of its active site environment independently of the preceding and following steps of enzymic transamination.  相似文献   

7.
Incubation of rat adipose-tissue microsomal fractions with iodoacetate caused an inactivation of glycerol phosphate acyltransferase that could be prevented by the presence of palmitoyl-CoA. A microsomal protein of subunit Mr 54 000 was found to react with radioactively labelled iodoacetate in the absence, but not in the presence, of palmitoyl-CoA. It is suggested that this protein is a component of glycerol phosphate acyltransferase. Incubation of rat adipose-tissue microsomal fractions with the catalytic subunit of cyclic AMP-dependent protein kinase, ATP and Mg2+ caused an inactivation of glycerol phosphate acyltransferase whose magnitude depended on the conditions used for assay of the acyltransferase. Rat adipose tissue microsomal proteins were phosphorylated by using protein kinase and [gamma-32P]ATP. One of the phosphorylated proteins was very similar, but not identical, in mobility to the Mr-54 000 protein labelled by iodoacetate. In contrast with a previous report [Sooranna & Saggerson (1976) FEBS Lett. 64, 36-39], no changes could be detected in the activity of glycerol phosphate acyltransferase in adipocytes treated with adrenaline. Adipocytes were labelled with [32P]Pi and treated with adrenaline, but no 32P was incorporated into the Mr-54000 protein labelled by iodoacetate. The results suggest that the activity of adipose-tissue microsomal glycerol phosphate acyltransferase is not directly controlled by phosphorylation.  相似文献   

8.
A new assay for the measurement of steroid 17alpha-hydroxylase activity in beef adrenals is described. This method is based on the biochemical mechanism of the enzymic reaction, i.e. the direct and stereospecific substitution of the proton located on the hydroxylated position. Progesterone or pregnenolone specifically labelled on the 17 position are solubilized in the incubation mixture with the help of Tween 80 and incubated under optimal conditions. The tritium enzymically released from the substrate is found in the medium as a molecule of water which is then distilled under reduced pressure and counted by liquid scintillation. The results obtained with this new method are comparable with those obtained with a conventional method using a 14C-labelled substrate.  相似文献   

9.
alpha-Chlorohydrin has been examined both for its ability to act as a substrate for glycerol kinase and as an inhibitor of the reaction of glycerol with glycerol kinase. Using a purified enzyme from Candida mycoderma, it was established that alpha-chlorohydrin does not act as a substrate for glycerol kinase, but does act as a competitive inhibitor (Ki of 30 mM) of purified glycerol kinase and the enzyme present in a sonicated preparation of ram spermatozoa. Neither alpha-chlorohydrin nor alpha-chlorohydrin phosphate acted as inhibitors of NAD- or flavin-linked glycerolphosphate dehydrogenase. It is concluded that alpha-chlorohydrin does not cause the impairment of sperm metabolism as a result of phosphorylation catalysed by glycerol kinase.  相似文献   

10.
Two polymeric water-soluble fractions were isolated by gel filtration after mild acid hydrolysis of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 1999. The fraction of higher molecular weight retained the O-antigenic specificity of the lipopolysaccharide and may be 'side-chain' material. This fraction was rich in N (about 10%) and gave several basic amino compounds on acid hydrolysis; fucosamine (at least 2.8% w/w) was the only specifc component identified. The fraction of lower molecular weight was a phosphorylated polysaccharide apparently corresponding to 'core' material. The major components of this fraction and their approximate molar proportions were: glucose (3-4); rhamnose (1); heptose (2); 3-deoxy-2-octulonic acid (1); galactosamine (1); alanine (1-1.5); phosphorus (6-7). In the intact lipopolysaccharide this fraction was probably linked to lipid A via a second residue of 3-deoxy-2-octulonic acid, and probably also contained additional phosphate residues and ethanolamine. The residues of 3-deoxy-2-octulonic acid were apparently substituted in the C-4 or C-5 position, and the phosphorylated heptose residues in the C-3 position. The rhamnose was mainly 2-substituted, though a little 3-substitution was detected. The glucose residues were either unsubstituted or 6-substituted. Four neutral oligosaccharides were produced by partial acid hydrolysis and were characterized by chemical, enzymic, chromatographic and mass-spectrometric methods of analysis. The structures assigned were: Glcpalpha1-6Glc; Glcpbeta1-2Rha; Rhapalpha1-6Glc; Glcpbeta1-2Rhapalpha1-6Glc. The galactosamine was substituted in the C-3 or C-4 position, the attachment of alanine was indicated, and evidence that the amino sugar linked the glucose-rhamnose region to the 'inner core' was obtained.  相似文献   

11.
The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates.  相似文献   

12.
Metabolic processes involving side-chain and ring cleavage of progesterone, 17-hydroxyprogesterone, 11-deoxycortisol and 16-dehydropregnenolone by Arthrobacter simplex were studied. The formation of the metabolites from progesterone indicates a pathway somewhat different from normal in the enzymic reaction sequence, and the 17-hydroxyprogesterone metabolites reveal a non-enzymic rearrangement step. The presence of a hydroxy group at C-21, as in 11-deoxycortisol, induces reduction of the C-20 carbonyl group. The microbial preparation of a novel androstane analogue, 17 beta-hydroxy-16 alpha-methoxyandrosta-1,4-dien-3-one, by incubation of 16-dehydropregnenolone with the bacterial strain was achieved. The formation of this metabolite is a multistep process involving a novel microbial generation of a methoxy group from a double-bond transformation in a steroid skeleton.  相似文献   

13.
Aldolase from rabbit muscle covalently binds fructose 1,6 bisphosphate after reduction with NaBH4. The reaction is stereospecific since after acid hydrolysis of the protein only N6(2-deoxy-2-glucitol) L-lysine is isolated. It is suggested that the lysyl amino group of the active site reacts with the face si of the C-2 group of fructose bisphosphate.  相似文献   

14.
Four modified substrates for acetylxylan esterases, 2-deoxy, 3-deoxy, 2-deoxy-2-fluoro, and 3-deoxy-3-fluoro derivatives of di-O-acetylated methyl beta-D-xylopyranoside were synthesized via 2,3-anhydropentopyranoside precursors. Methyl 2,3-anhydro-4-O-benzyl-beta-D-ribopyranoside was transformed into methyl 2,3-anhydro-4-O-benzyl-beta-D-lyxopyranoside in three steps. The epoxide ring opening of 2,3-anhydropentopyranosides was accomplished either by hydride reduction or hydrofluorination. Methyl beta-D-xylopyranoside 2,3,4-tri-O-, 2,4-di-O-, and 3,4-di-O-acetates, and the prepared diacetate analogues were tested as substrates of acetylxylan esterases from Schizophyllum commune and Trichoderma reesei. Measurement of their rate of deacetylation pointed to unique structural requirements of the enzymes for the substrates. The enzymes differed particularly in the requirement for the trans vicinal hydroxy group in the deacetylation at C-2 and C-3 and in the tolerance to the presence of trans vicinal acetyl groups esterifying the OH group at C-2 and C-3.  相似文献   

15.
Human sulphamate sulphohydrolase was purified at least 20,000-fold to homogeneity from liver with a three-step four-column procedure, which consisted of a concanavalin A-Sepharose/Blue A agarose coupled step, and Bio-Gel HT step and then a CM-Sepharose step. The procedure was also used to purify enzyme from kidney and placenta. The subunit Mr of liver, kidney and placenta sulphamate sulphohydrolase was assessed to be 56,000 by using SDS/polacrylamide-gel electrophoresis. The native protein Mr of enzyme from all three tissue sources was assessed by gel-permeation chromatography to be approx. 120,000 on Sephacryl S-300 and 100,000 on Fractogel TSK. It is probable that the native enzyme results from dimerization of subunits. Kinetic parameters (km and kcat.) of human liver sulphamate sulphohydrolase were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparin and heparan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, are turned over up to 372000 times faster than the monosaccharide substrate 2-sulphaminoglucosamine. Aglycone structures that influence substrate binding and/or enzyme activity were penultimate-residue C-6 carboxy and C-2 sulphate ester groups and a post-penultimate 2-sulphaminoglucosamine residue. The C-4 hydroxy group of the 2-sulphaminoglucosamine under enzymic attack is involved in binding of substrate to enzyme. The presence of C-6 sulphate ester on the non-reducing end 2-sulphaminoglucosamine stimulates sulphamate bond hydrolysis and substrate affinity if the adjacent monosaccharide residue is idose or 2-sulphoidose, but strongly inhibits hydrolysis if the adjacent monosaccharide residue is iduronic acid. Sulphamate sulphohydrolase is an exoenzyme, since activity toward internal sulphamate bonds was not detected. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure. The presence of aglycone C-2 sulphate ester and aglycone C-6 carboxy groups and C-6 sulphate ester groups on the 2-sulphaminoglucosamine residue under attack considerably affect the pH response. Structurally complex substrates had two pH optima. Incubation temperature and buffer ionic strength markedly influenced pH optima and enzyme activity. Cu2+ and SO4(2-)ions are potent inhibitors of enzyme activity.  相似文献   

16.
The enzymic conversion of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid (i.e. o-succinylbenzoic acid) to 1,4-dihydroxy-2-naphthoic acid is a cyclization reaction which is part of menaquinone (vitamin K2) biosynthesis. This conversion, which is probably a two-step process, was investigated using chirally labelled samples of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. To synthesize these, the following enzymes were employed: isocitrate: NADP+ oxidoreductase (EC 1.1.1.42), isocitrate glyoxylate-lyase (EC 4.1.3.1), 2-oxoglutarate dehydrogenase complex (which includes EC 1.2.4.2), 4-(2'-carboxyphenyl)-4-oxobutyrate synthase system and 4-(2'-carboxyphenyl)-4-oxobutyrate: CoA ligase. Isocitrate: NADP+ oxidoreductase was employed to generate the two enantiomeric samples of 2-oxoglutarate enantiotopically labelled at C-3. These samples were converted enzymically to succinate with retention of configuration at C-2 and C-3, and to 4-(2'-carboxyphenyl)-4-oxobutyric acid with retention of configuration at C-3. Isocitrate glyoxylate-lyase and isocitrate NADP+ oxidoreductase were employed to generate samples of 2-oxoglutarate enantiotopically tritiated at C-4 or at C-3 and C-4. The four variously labelled samples of 2-oxoglutarate were enzymically converted to the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. The resulting variously labelled coenzyme A esters were incubated with naphthoate synthase to investigate the ring closure reaction. In the first step the 2HRe atom of the oxobutyric moiety of the coenzyme A ester is equilibrated with solvent protons in a fast and reversible reaction. Subsequently the 2HSi and 3HSi atoms are removed whereas the 3HRe atom becomes the proton at C-3 of 1,4-dihydroxy-2-naphthoic acid. The second step in this ring closure reaction is the rate-limiting step.  相似文献   

17.
The reaction of tryptamine with indolyl-3-alkane alpha-hydroxylase is shown to remove stereospecifically the pro-S hydrogen at C-2 of the side chain and to give hydroxytryptamine of "R" configuration. The reaction therefore proceeds stereospecifically with net inversion of configuration at C-2 of the tryptamine side chain. In the reaction of L-tryptophan methyl ester, the enzyme also catalyzes stereospecific removal of the pro-S hydrogen at C-3, but the product 3-hydroxytryptophan methyl ester is racemic at C-3. The unreacted tryptophan methyl ester is shown to incorporate solvent hydrogen into the pro-S position at C-3 in an at least partially stereospecific manner, suggesting that the reaction of L-tryptophan methyl ester is reversible. The hydrogens at C-1 of the tryptamine side chain and the alpha-hydrogen of L-tryptophan methyl ester are shown to be retained in the reactions. The results support the notion that the enzyme catalyzes stereospecific 1,4-dehydrogenation of 3-substituted indoles to the coresponding alkylidene indolenines as the primary reaction, followed by stereospecific or nonstereospecific hydration of these intermediates as a secondary process. Substrate specificity studies with a number of tryptophan analogs are in excellent agreement with such a mechanism.  相似文献   

18.
A new assay is described to measure the activity of cholesterol 7alpha-hydroxylase and compared to the conventional 14C method used by other investigators. This method is based on the mechanism of the enzymic hydroxylation, i.e. a direct and stereospecific substitution of the 7alpha-hydrogen by a hydroxyl group. [7alpha-3H]Cholesterol is incubated at 37 degrees C and in the presence of molecular O2, in a medium buffered by postassium phosphate at pH 7.4 and containing liver microsomes (or 9000 X g supernatant), NADPH, MgCl2 and cysteamine. Tween-80 (1.5 mg/ml) is used to introduce enough substrate (300 muM) in the incubation mixture to saturate the enzyme (Km = 100 muM). Under these conditions the tritiated water released into the incubation medium reflects accurately the enzymic activity. The results obtained with this method are similar to the one obtained with a [4-14C]cholesterol technique (r = 0.96; P less than 0.001). The main advantage of the [7alpha-3H]cholesterol method is a complete independence from further metabolism of the first enzymic product, the 7alpha-hydroxycholesterol, the tritiated water representing the entire cholesterol 7alpha-hydroxylase activity.  相似文献   

19.
On incubation with beta-D-galactosidase, D-galactal-2-d (1) plus glycerol yielded 1-deoxyglycerol-1-yl 2-deoxy-beta-D-lyxo-hexopyranoside-2(S)-d. By 1H-n.m.r. analysis, it was shown that the hydrogen atom introduced on C-2 is trans-related to the aglycon moiety. In contrast to this stereospecific, enzyme-catalyzed addition, the reaction of phenol with peracetylated 1, catalyzed by p-toluenesulfonic acid, which yields phenyl 3,4,6-tri-O-acetyl-2-deoxy-alpha-D-lyxo-hexopyranoside-2-d, was shown to entail both a trans and a cis addition.  相似文献   

20.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号