首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of cholesterol on the dynamics and the structural properties of two different spin probes, the sterol type CSL and the phospholipid type 16-PC, in POPC/cholesterol oriented multilayer model membranes were examined. Our results are consistent with a nonideal solution containing cholesterol-rich clusters created by the self association of cholesterol in POPC model membranes. The lateral diffusion coefficient D of the spin probes was measured over the temperature range of 15 to 60 degrees C and over the concentration range of 0 to 30 mol% of cholesterol in the model membrane by the electron spin resonance (ESR) imaging method. The rotational diffusion coefficients (including R perpendicular) and the order parameter S were determined utilizing a nonlinear least square ESR spectral simulation method. D, R perpendicular and S of CSL deviate considerably from linear dependence on mole percent cholesterol. The D of CSL was decreased by a factor of four at 15 degrees C and a factor of two at 60 degrees C for concentrations of cholesterol over 10 mol %, whereas those of 16-PC were hardly affected. Cholesterol decreased R perpendicular by a factor of 10 at 30 mol % of cholesterol, but it increased slightly that of 16-PC. A significant increase of S for CSL due to the presence of cholesterol was observed. It is shown how the difference in variation of S for CSL vs. 16-PC with composition may be interpreted in terms of their respective activity coefficients, and how a single universal linear relation is obtained for the S of both probes in terms of a scaled temperature. Simple but general correlations of D and of R perpendicular with S were also found, which aid in the interpretation of these diffusion coefficients.  相似文献   

3.
High-field electron spin resonance (ESR) spectroscopy is currently undergoing rapid development. This considerably increases the versatility of spin labelling which, at conventional field strengths, is already well established as a powerful physical technique in membrane biology. Among the unique advantages offered by high-field spectroscopy, particularly for spin-labelled lipids, are sensitivity to non-axial rotation and lateral ordering, a better orientational selection, an extended application to rotational dynamics, and an enhanced sensitivity to environmental polarity. These areas are treated in some depth, along with a detailed consideration of recent developments in the investigation of transmembrane polarity profiles.  相似文献   

4.
The collision rates between spin-labelled valeric acid in water, and between the corresponding mixed-chain, spin-labelled phosphatidylcholine in water-methanol mixtures, and also between spin-labelled phosphatidylcholine monomers and micelles in water have been determined from the spin-spin broadening of the electron spin resonance spectrum. In each case the second order rate constants are consistent with a diffusion-controlled process. For spin-labelled valeric acid in water the translational diffusion coefficient at 20°C is 3.4 · 10−6 cm2 · s−1, and for spin-labelled phosphatidylcholine varies between 2.3 · 10−6 and 3.8 · 10−6 cm2 · s−1 within the range 44 to 88 wt% methanol. The spin-labelled phosphatidylcholine monomer diffusion coefficient in water at 20°C is 2.4 · 10−6 cm2 · s−1, deduced from the monomer-micelle association rate, with an activation energy of 4.0 kcal · mol−1. The much slower on-rates for association of lipid monomers with phospholipid bilayer vesicles reported in the literature, therefore indicate that incorporation into bilayers is not a diffusion-controlled process.  相似文献   

5.
The high resolution (narrow linewidth) amphiphilic spin probe perdeutero di-t-butyl nitroxide (PDDTBN) has been used to investigate the effect of alpha-tocopherol on lecithin liposomes. The electron spin resonance (ESR) results obtained as a function both of alpha-tocopherol concentration and of temperature indicate the presence of two different hydrophobic sites for the spin probe molecules. The presence of two distinct phases, one alpha-tocopherol-poor and the other alpha-tocopherol-rich, is suggested in these phospholipid bilayers.  相似文献   

6.
Recently, developments in time-resolved spin-label electron spin resonance (ESR) spectroscopy have contributed considerably to the study of biomembranes. Two different applications of electron spin echo spectroscopy of spin-labelled phospholipids are reviewed here: (1) the use of partially relaxed echo-detected ESR spectra to study the librational lipid-chain motions in the low-temperature phases of phospholipid bilayers; (2) the use of electron spin echo envelope modulation spectroscopy to determine the penetration of water into phospholipid membranes. Results are described for phosphatidylcholine bilayer membranes, with and without equimolar cholesterol, that are obtained with phosphatidylcholine spin probes site-specifically labelled throughout the sn-2 chain.  相似文献   

7.
Membranes from dormant and heat-activated spores were labelled with the fatty acid spin probe 5-doxyl stearate and analyzed using electron spin resonance spectroscopy. Membranes from dormant spores were slightly less fluid above 23° than membranes from heat-activated spores. Also L-proline caused a much larger increase in the upper transition temperature than did D-proline when added to membranes from heat-activated spores. Thus a compound known to trigger germination in this strain may interact stereospecifically to alter the biophysical properties of the spore membranes.  相似文献   

8.
The technique of saturation transfer electron spin resonance has been applied to study the rotational diffusion of spin-labeled Ca2+, Mg2+-dependent ATPase molecules in the membranes of sarcoplasmic reticulum vesicles. Comparison of the present data with those for spin-labeled hemoglobin undergoing isotropic rotation leads to a value of 2 X 10(-4) s for the apparent rotational correlation time at 20 degrees C for the membrane-bound protein. Consideration of the anisotropy of the Brownian rotation of the membrane-bound ATPase suggests that the true correlation time for the expected axial rotation may be somewhat smaller than the apparent value. An Arrhenius plot of the rotational motion shows a break, which is interpreted as indicating the occurrence of a conformational change of the ATPase molecule at about 15 degrees C.  相似文献   

9.
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.  相似文献   

10.
Collado MI  Goñi FM  Alonso A  Marsh D 《Biochemistry》2005,44(12):4911-4918
Interactions of palmitoylsphingomyelin with cholesterol in multilamellar vesicles have been studied over a wide range of compositions and temperatures in excess water by using electron spin resonance (ESR) spectroscopy. Spin labels bearing the nitroxide free radical group on the 5 or 14 C-atom in either the sn-2 stearoyl chain of phosphatidylcholine (predominantly 1-palmitoyl) or the N-stearoyl chain of sphingomyelin were used to determine the mobility and ordering of the lipids in the different phases. Two-component ESR spectra of the 14-position spin labels demonstrate the coexistence first of gel (L(beta)) and liquid-ordered (L(o)) phases and then of liquid-ordered and liquid-disordered (L(alpha)) phases, with progressively increasing temperature. These phase coexistences are detected over a limited range of cholesterol contents. ESR spectra of the 5-position spin labels register an abrupt increase in ordering at the L(alpha)-L(o) transition and a biphasic response at the L(beta)-L(o) transition. Differences in outer splitting between the C14-labeled sphingomyelin and phosphatidylcholine probes are attributed to partial interdigitation of the sphingomyelin N-acyl chains across the bilayer plane in the L(o) state. In the region where the two fluid phases, L(alpha) and L(o), coexist, the rate at which lipids exchange between phases (<7 x 10(7) s(-)(1)) is much slower than translational rates in the L(alpha) phase, which facilitates resolution of two-component spectra.  相似文献   

11.
M. Ge  D. E. Budil    J. H. Freed 《Biophysical journal》1994,66(5):1515-1521
A detailed electron spin resonance (ESR) study of mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and phosphatidylserine (POPS) in oriented multilayers in the liquid crystalline phase is reported with the purpose of characterizing the effects of headgroup mixing on the structural and dynamical properties of the acyl chains. These studies were performed over a range of blends of POPC and POPS and temperatures, utilizing the spin-labeled lipids 16-phosphatidylcholine and 5-phosphatidylcholine as well as cholestane (CSL). The ESR spectra were analyzed by nonlinear least-squares fitting using detailed spectral simulations. Whereas CSL shows almost no variation in ordering and rotational dynamics versus mole fraction POPS, (i.e. XPS), and 5-PC shows small effects, the weakly ordered end-chain labeled 16-PC shows large relative effects, such that the orientational order parameter, S is at a minimum for XPS = 0.5 where it is about one-third the value observed for XPS = 0 and 1. This is directly reflected in the ESR spectrum as a substantial variation in the hyperfine splitting with XPS. The least-squares analysis also shows a reduction in rotational diffusion coefficient, R perpendicular by a fractor of 2 for XPS = 0.5 and permits the estimation of S2, the ordering parameter representing deviations from cylindrically symmetric alignment. These results are contrasted with 2H NMR studies which were insensitive to effects of mixing headgroups on the acyl chains. The ESR results are consistent with a somewhat increased disorder in the end-chain region as well as a small amount of chain tilting upon mixing POPC and POPS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The detection, quantification, and imaging of short-lived reactive oxygen species, such as superoxide, in live biological specimens have always been challenging and controversial. Fluorescence-based methods are nonspecific, and electron spin resonance (ESR) spin-trapping methods require high probe concentrations and lack the capability for sufficient image resolution. In this work, a novel (to our knowledge), sensitive, small ESR imaging resonator was used together with a stable spin probe that specifically reacts with superoxide with a high reaction rate constant. This ESR spin-probe-based methodology was used to examine superoxide generated in a plant root as a result of an apical leaf injury. The results show that the spin probe rapidly permeated the plant's extracellular space. Upon injury of the plant tissue, superoxide was produced and the ESR signal decreased rapidly in the injured parts as well as in the distal part of the root. This is attributed to superoxide production and thus provides a means of quantifying the level of superoxide in the plant. The spin probe's narrow single-line ESR spectrum, together with the sensitive imaging resonator, facilitates the quantitative measurement of superoxide in small biological samples, such as the plant's root, as well as one-dimensional imaging along the length of the root. This type of methodology can be used to resolve many questions involving the production of apoplastic superoxide in plant biology.  相似文献   

13.
The new technique of spin trapping has been applied to a biological system for the first time. The light induced generation of O2? by chloroplasts in the presence of oxygen has been shown by the production of the O2? adduct of the spin trap 5,5-dimethyl-1-pyrroline-1-oxide. The O2? adduct was detected by electron spin resonance spectroscopy. Methyl viologen enhanced the production of the O2? adduct thus providing support for the hypothes is that methyl viologen accepts electrons from the primary acceptor of photosystem I and subsequently reduces O2 to O2?.  相似文献   

14.
15.
Real-time detection of free radicals generated within the body may contribute to clarify the pathophysiological role of free radicals in disease processes. Of the techniques available for studying the generation of free radicals in biological systems, electron spin resonance (ESR) has emerged as a powerful tool for detection and identification. This article begins with a review of spin trapping detection of oxygen-centered radicals using X-band ESR spectroscopy and then describes the detection of superoxide and hydroxyl radicals by the spin trap 5,5-dimethyl-1-pyrroline-N-oxide and ESR spectroscopy in the perfusate from isolated perfused rat livers subjected to ischemia/reperfusion. This article also reviews the current status of ESR for the in vivo detection of free radicals and in vivo imaging of exogenously administered free radicals. Moreover, we show that in vivo ESR-computed tomography with 3-carbamoyl-2,2,5, 5-tetramethylpyrrolidine-1-oxyl may be useful for noninvasive anatomical imaging and also for imaging of hepatic oxidative stress in vivo.  相似文献   

16.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

17.
Coordination reaction between linolenic-acid-hydroperoxide (LHPO) and chloro(5, 10, 15, 20-tetraphenyl)-porphyrinato iron (III), Fe(III)TPPCl, was investigated by means of ESR. ESR spectra of the ferric low-spin complex (g1 = 2.336, g2 = 2.174 and g3 = 1.929) was recorded for the mixture prepared by mixing Fe(III)TPPCl and LHPO at -78 degrees C in the presence of alkaline reagent. ESR line width of complex was broadened when 17O2 labeled LHPO was used for ESR measurement. In terms of the g-parameters of the ferric low-spin species, this complex was concluded to be Fe(III)TPP(-OCH3)(-OO-linolenic acid) type complex.  相似文献   

18.
We report here on a 250-GHz electron spin resonance (ESR) study of macroscopically aligned model membranes composed of mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS), utilizing the nixtroxide-labeled cholesterol analog cholestane (CSL). Two clearly resolved spectral components, distinct in both their ordering and dynamics, are resolved. The major component in membranes composed mostly of DMPC shows typical characteristics, with the long axis of CSL parallel to the bilayer normal with slow (10(6) </= R </= 10(7) s-1) rotational diffusion rates, as expected for cholesterol. The second component grows in as the mole fraction of DMPS increases. A detailed analysis shows that CSL senses a local, strongly biaxial environment. Our results imply that the inefficient packing between cholesterol and DMPS occurs probably because of the strong interactions between the PS headgroups, which provide the local biaxiality. Such a packing of the headgroups has been predicted by molecular dynamics simulations but had not been observed experimentally. The analysis of these spectral components was greatly aided by the excellent orientational resolution provided by the 250-GHz spectra. This enabled the key qualitative features of this interpretation to be "read" off the spectra before the detailed analysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号