首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Six TaqMan real-time polymerase chain reaction (PCR) systems using minor groove binding (MGB) probes have been developed for the detection quantitation of bovine, porcine, lamb, chicken, turkey, and ostrich DNA in complex samples. Species-specific amplification was achieved by combining only two fluorogenic probes and 10 oligonucleotide primers targeting mitochondrial sequences, decreasing the cost of the assay significantly. The limits of detection ranged from 0.03 to 0.80 pg of template DNA. Analysis of experimental mixtures containing two to four different species showed the suitability of the assay for detection of more than 1% of pork, chicken, or turkey and of more than 5% of cattle or lamb. The quantitation accuracy in samples containing 10-100% of beef or pork DNA was close to 90%. The system is complemented with one additional TaqMan MGB detector based on consensus sequence segments of the nuclear 18S ribosomal RNA gene. A method to evaluate the presence of unknown eukaryotic DNA in a mixture, where data derived from the species-specific detection are compared with the experimental values obtained from the general 18S detector, is presented. This method allows the validation of the quantitative measurements, providing an internal control of the total content of PCR-amplifiable DNA in the sample. The system was tested on DNA mixtures containing different shares of up to four different species and on DNA extracted from processed commercial food samples.  相似文献   

3.
A polymerase chain reaction (PCR) assay was evaluated for detection of Opisthorchis viverrini eggs in the stool specimens of light and heavily infected individuals in Khon Kaen province of Thailand. A total of 75 fecal specimens were analyzed by PCR following DNA extraction. All the microscopically positive samples were positive by PCR, while 23 of 30 (76.6%) microscopically negative samples were also PCR positive. The sensitivity of the assay was 5 eggs/g of stool. This method is potentially useful in the diagnosis of human opisthorchiasis in endemic areas for treatment and in epidemiological investigations.  相似文献   

4.
Quantitative real-time polymerase chain reaction (QRT-PCR) has become one of the most widely used methods for gene expression analysis. However, the expression profile of a target gene may be misinterpreted due to unstable expression of the reference genes under different experimental conditions. Thus, a systematic evaluation of these reference genes is necessary before experiments are performed. In this study, 10 putative reference genes were chosen for identifying expression stability using geNorm, NormFinder, and BestKeeper statistical algorithms in 12 different cucumber sample pools, including those from different plant tissues and from plants treated with hormones and abiotic stresses. EF1α and UBI-ep exhibited the most stable expression across all of the tested cucumber samples. In different tissues, in addition to expression of EF1α and UBI-ep, the expression of TUA was also stable and was considered as an appropriate reference gene. Evaluation of samples treated with different hormones revealed that TUA and UBI-ep were the most stably expressed genes. However, for abiotic stress treatments, only EF1α showed a relatively stable expression level. In conclusion, TUA, UBI-ep, and EF1α will be particularly helpful for reliable QRT-PCR data normalization in these types of samples. This study also provides guidelines for selecting different reference genes under different conditions.  相似文献   

5.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

6.
In assays to determine whether viable cells of Enterobacteriaceae are present in pasteurized milk, the typical ethidium monoazide (EMA) polymerase chain reaction (PCR) targets a short stretch of DNA. This process often triggers false-positive results owing to the high level of dead cells of Enterobacteriaceae that had initially contaminated the sample. We have developed a novel, direct, real-time PCR that does not require DNA isolation (DQ-PCR) to detect low levels of cells of Enterobacteriaceae regardless of live and dead cells first. We confirmed that the DQ-PCR targeting a long DNA (the 16S ribosomal RNA [rRNA] gene, amplified length of 1514 bp) following EMA treatment is a promising tool to detect live bacteria of all genera owing to the complete suppression of background signal from high levels of dead bacteria in pasteurized milk. However, when identifying viable bacteria in pasteurized milk, commercial PCR primers designed for detecting long stretches of DNA are generally not available. Thus, we treated samples with EMA and then carried out an initial round of PCR of a long stretch of DNA (16S gene, 1514 bp). We then performed another round of PCR, a novel nested PCR to generate short products using commercial primers. This procedure resulted in the rapid detection of low levels of viable cells of Enterobacteriaceae.  相似文献   

7.
Quantitative real-time RT-PCR (RT-qPCR) has proven to be a valuable molecular technique in gene expression quantification. Target gene expression levels are usually normalized to a stably expressed reference gene simultaneously determined in the same sample. It is critical to select optimal reference genes to interpret data generated by RT-qPCR. However, no suitable reference genes have been identified in human ovarian cancer to date. In this study, 10 housekeeping genes, ACTB, ALAS1, GAPDH, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP as well as 18S rRNA that were already used in various studies were analyzed to determine their applicability. Totally 20 serous ovarian cancer specimens and 20 normal ovarian epithelial tissue specimens were examined. All candidate reference genes showed significant differences in expression between malignant and nonmalignant groups except GUSB, PPIA, and TBP. The expression stability and suitability of the 11 genes were validated employing geNorm and NormFinder. GUSB, PPIA, and TBP were demonstrated as the most stable reference genes and thus could be used as reference genes for normalization in gene profiling studies of serous ovarian cancer, while the combination of two genes (GUSB and PPIA) or the all three genes should be recommended as a much more reliable normalization strategy.  相似文献   

8.
In this study, we have established and evaluated a genus-specific polymerase chain reaction (PCR) and species-specific nested PCRs for the detection of Candida species in blood samples of neutropenic mice and patients suspected of candidemia. DNA segments of the gene encoding cytochrome P450 L1A1 were targeted for amplification by using genus and species-specific primers. As compared to the genus-specific PCR, the species-specific nested PCRs improved the sensitivity by 10 times with the detection limit < 10 yeast cells. Of the 18 blood samples tested daily over a period of 8 days following Candida albicans infection in neutropenic mice, four samples were positive by genus-specific PCR and 11 were positive by species-specific nested PCR. The PCR results were correlated with culture findings obtained on blood samples. Two of the three blood culture-positive samples were positive by genus-specific PCR and all the three with species-specific nested PCR. Among 15 mice, which were negative by blood culture but had C. albicans isolated from visceral organs, 2 and 8 mice yielded positive results by genus-specific PCR and species-specific nested PCR, respectively. Consistent with the results of the animal study, species-specific nested PCR yielded much higher positivity as compared to culture (52.2% versus 21.2%) in patients suspected for candidemia. Moreover, 8 specimens which were negative for Candida by genus-specific PCR became positive by species-specific nested PCR. No correlation was apparent between PCR positivity and Candida antigen titers. The results suggest that nested PCR is a sensitive technique for the detection of Candida species from blood samples, and thus it may have application in the diagnosis of suspected cases of candidemia and candidiasis.  相似文献   

9.
Spermadhesins are the major proteins of boar seminal plasma and form a group of polypeptides probably involved in reproduction. In previous work, a member of the spermadhesin family from buck seminal plasma, called BSFP, was characterized by mass spectrometry and N-terminal sequencing. The present study aimed to clone and characterize the BSFP gene and investigate its expression along the genital tract using real-time polymerase chain reaction (PCR). The cDNAs of the seminal vesicle, testis, epididymis, bulbourethral gland, and ductus deferens were prepared from a buck. Following 3'- and 5'-end amplifications using seminal vesicle cDNA, we cloned and sequenced four highly similar (97-98%) nucleotide sequences encoding spermadhesins, which were named Bodhesin-1(Bdh-1), Bdh-2, Bdh-3, and Bdh-4. All deduced amino acid sequences contained the CUB domain signature and were 49-52% similar to boar AWN. Among the four Bdh amino acid sequences, Bdh-2 was the most similar to the BSFP N-terminal fragment. By using real-time PCR, it was verified specific amplifications for all Bdh in the seminal vesicle, testis, epididymis, and bulbourethral gland, with the exception of Bdh-2 in epididymis. The amplicons had a melting temperature and size of approximately 78 degrees C and 130 bp, respectively. Bdh expression was higher in the seminal vesicle when compared to the other tissues. The present work confirms that goat is the fifth mammalian species, after pig, cattle, horse, and sheep, in which spermadhesin molecules are found. To the best of our knowledge, this is the first report on buck spermadhesin genes using molecular cloning and expression profile.  相似文献   

10.
11.
Real time quantitative PCR (RQ-PCR) assays were developed for the measurement of differential real-time expression of immune-related genes in skin and whole blood from Cyprinus carpio during an infection with the ectoparasite Ichthyophthirius multifiliis. The target genes included the chemokines CXCa and CXCb, the chemokine receptors CXCR1 and CXCR2, the pro-inflammatory cytokines interleukin 1 beta (IL-1beta) and tumour necrosis factor alpha (TNF-alpha) and the enzymes inducible nitric oxide synthase (iNOS) and arginase 2. The strongest up-regulation in skin was observed in the IL-1beta, CXCR1 and iNOS genes at 36-48h post-exposure to theronts. A significant up-regulation of the genes CXCa and TNF-alpha was also observed. An up-regulation of the expression of the genes CXCa, CXCR1, IL-1beta and iNOS was likewise found in blood, although the increase in the expression levels was more moderate and the expression peak was detected earlier in comparison with the skin. In addition, CXCR2 and the arginase 2 genes were specifically induced in blood. Our results confirm the role of CXCR1 and IL-1beta as two prominent molecules involved in the initiation of the inflammatory process in fish in relation to an ectoparasite infection. Moreover, this study confirms the role of carp skin as an important source of pro-inflammatory molecules as well as an active modulator of the local inflammation. Finally, expression and regulation of the evaluated genes in blood confirm the important role of the migrated leucocytes in the immune response against I. multifiliis.  相似文献   

12.
The sea bass, Dicentrarchus labrax, is one of the most extensively farmed marine fishes in the Mediterranean. Under the high-density condition common in aquaculture, the monogenean gill parasite Diplectanum aequans can cause significant economic losses. This study used real-time quantitative PCR to investigate the dynamic expression of immune response genes in sea bass infected with Diplectanum aequans. The target genes, interleukin-1 (IL-1beta, transforming growth factor (TGF-beta and T-cell receptor (TCR-beta), were studied in the gills and spleen of the sea bass from the first day of infection until thirty days post- infection. Our results showed that there was an increase in IL-1beta gene expression in the spleen and gills and in TGF-beta gene expression in the gills of infected fish. These results show that parasitic infection induced a local inflammatory reaction and that reaction was restricted to the site of infection. Finally, the absence of relationship between TCR-beta expression and the parasitic infection suggests that the adaptive immune system is not involved in the response against this parasite.  相似文献   

13.
Gene expression studies in intestinal epithelial and stromal cells are a common tool for investigating the mechanisms by which the homeostasis of the small intestine is regulated under normal and pathological conditions. Quantitative real-time PCR (qPCR) is a sensitive and highly reproducible method of gene expression analysis, with expression levels quantified by normalization against reference genes in most cases. However, the lack of suitable reference genes for epithelial cells with different differentiation states and nonepithelial tissue cells has limited the application of qPCR in gene expression studies of small intestinal samples. In this study, 13 housekeeping genes, ACTB, B2M, GAPDH, GUSB, HPRT1, HMBS, HSP90AB1, RPL13A, RPS29, RPLP0,PPIA, TBP, and TUBA1, were analyzed to determine their applicability for isolated crypt cells, villus cells, deepithelialized mucosa, and whole mucosa of the mouse small intestine. Using geNorm and NormFinder software, GUSB and TBP were identified as the most stably expressed genes, whereas the expressions of the commonly used reference genes GAPDH, B2M, and ACTB, and ribosomal protein genes RPL13A, RPS29, and RPLP0 were relatively unstable. Thus, this study demonstrates that GUSB and TBP are the optimal reference genes for the normalization of gene expression in the mouse small intestine.  相似文献   

14.
A real-time polymerase chain reaction (PCR) method for the quantification of chrysanthemum yellows (CY) phytoplasma DNA in its plant (Chrysanthemum carinatum) and insect (Macrosteles quadripunctulatus) host is described. The quantity of CY DNA was measured in each run relative to the amount of host DNA in the sample. Primers and a TaqMan probe for the specific PCR amplification of phytoplasma DNA were designed on a cloned CY-specific ribosomal fragment. Primers and TaqMan probes were also designed on sequences of the internal transcribed spacer region of the insect’s ITS1 rDNA and of the plant’s 18S rDNA for amplification from C. carinatum and M. quadripunculatus, respectively. Absolute quantification of CY DNA was achieved by comparison with a dilution series of the plasmid containing a CY 16S rDNA target sequence. Absolute quantification of plant and insect DNAs was achieved by comparison with a dilution series of the corresponding DNAs. Quantification of CY DNA in relation to host DNA was finally expressed as genome units (GU) of phytoplasma DNA per nanogram of host (plant or insect) DNA. Relative quantification avoided influences due to different yields during the DNA extraction procedure. The quantity of CY DNA was about 10,000–20,000 GU/ng of plant DNA and about 30,000–50,000 GU/ng of insect DNA. The method described could be used to phytoplasma multiplication and movement in different plant and insect hosts.  相似文献   

15.
Detection of mycoplasma contaminations by the polymerase chain reaction   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) has been used for the general detection ofMollicutes. 25Mycoplasma andAcholeplasma species were detected including important contaminants of cell cultures such asM. orale, M. arginini, M. hyorhinis, M. fermentans, A. laidlawii and additional human and animal mycoplasmas. PCR reactions were performed using a set of nested primers defined from conserved regions of the 16S rRNA gene. The detection limit was determined to be 1 fg mycoplasma DNA, which is equivalent to 1–2 genome copies of the 16S rRNA coding region. The identity of the amplification products was confirmed by agarose gel electrophoresis and restriction enzyme analysis. DNA from closely and distantly related micro-organisms did not give rise to specific amplification products. The method presented here offers a much more sensitive, specific and rapid assay for the detection of mycoplasmas than the existing ones.  相似文献   

16.
Strain-specific rRNA-targeted primers were designed for the quantitative detection of Bifidobacterium infantis Y1, B. breve Y8 and B. longum Y10 used in a pharmaceutical probiotic product (VSL-3). PCR and real-time PCR techniques with the selected primers were employed for the direct enumeration of the bifidobacteria in the probiotic preparation and for studying their kinetic characteristics in batch cultures. These analysis revealed that B. infantis Y1 was the predominant strain in the probiotic product and that its growth rate was the highest. Since B. infantis Y1, B. breve Y8 and B. longum Y10 are co-cultured during the industrial production of VSL-3, the kinetic characteristics of these strains can explain their different concentrations in the probiotic preparation. A validation of the PCR quantification method was performed by identifying a representative number of isolates from the bacterial mixtures with automated ribotyping. The methodology described represents a useful tool for the specific quantitative detection of bacterial strains and species in complex mixtures such as pharmaceutical preparations, dairy starter cultures, faecal samples and biopsies.  相似文献   

17.
We developed multiplex polymerase chain reaction methods to identify five Orius (Heteroptera: Anthocoridae) species that occur commonly in Japan: Orius sauteri, Orius minutus, Orius strigicollis, Orius nagaii, and Orius tantillus. The method amplified internal transcribed spacer 1 of the nuclear ribosomal DNA by using five primers simultaneously and produced species-specific banding patterns upon agarose gel electrophoresis. Reliability of the method was tested for 350 individuals of 23 strains, and consistent results were obtained. Dichotomous keys are also provided for easy and quick species identification.  相似文献   

18.
Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We have developed a polymerase chain reaction (PCR) method for sequencing of tobacco chloroplast genome. In a mixture containing chloroplast DNA, 5-end-labeled oligonucleotide primer, Taq DNA polymerase and reaction buffer, we were able to sequence a segment of chloroplast 16S rRNA gene. The results showed that the 750 bp of DNA sequenced were identical to the sequence reported, indicating that direct sequencing method that we have developed is useful for the sequencing of chloroplast genome. To analyze the chloroplast genome more rapidly in those in vitro grown plantlets, we also developed a simple method which is applicable for the amplifications and sequencing of chloroplast 16S rRNA fragment from either 0.15 g of tobacco leaf or stem tissue. The readable sequences obtained from the presented methods were consistent with the published sequence.  相似文献   

20.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx), as a ubiquitous antioxidant enzyme in the glutathione peroxidases (GPx) family, plays multiple roles in organisms. However, there is very little information on PHGPx in goats (Capra hircus). In this study, a full-length cDNA was cloned and characterized from Taihang black goat testes. The 844 bp cDNA contains an open reading frame (ORF) of 597 bp. The goat PHGPx nucleotide sequence contains a selenocysteine (sec) codon TGA244-246, two potential start codons ATG20-22 and ATG108-110, a polyadenylation signal AATAAA813-818 and selenocysteine insertion sequence (SECIS) motif AUGA688-691, UGA729-731 and AAA703-705. As a selenoprotein, the active-site motifs and GPx family signature motifs LAFPCNQF101-108 and WNFEK165-170 were also found. The order of PHGPx mRNA expression levels was: testes >> heart > brain > epididymis > kidney > liver > lung > spleen > muscle. Real-time PCR and immunohistochemistry results revealed similar expression differences in different age testes, with high expression levels during adolescence. Immunofluorescence results suggested that PHGPx mainly expressed in Leydig cells and spermatids in mature goat testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号