首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present experiment tested our hypothesis that the subjects will wear more clothing in the evening cold under the influence of bright light exposure in the late afternoon and evening. Nine young female adults participated in this study. Light intensity was controlled from 9:00 h to 16:00 h at 100 lx, and from 16:00 h to 20:30 h either at 3000 lx in the bright light (Brighte) or at 10 lx in the dim light ("Dim") conditions. Light intensity was maintained at 10 lx from 20:30 h to 23:00 h. They were instructed to wear garments to maintain themselves to feel comfortable during the fall of ambient temperature from 30 degrees C to 15 degrees C (21:00 h - 22:00 h) and its constant temperature at 15 degrees C (22:00 h - 23:00 h). Most subjects dressed in heavier clothing in the "Bright" than in the "Dim" conditions. The evening fall of core temperature was significantly smaller and the urinary melatonin secretion was significantly lower in the "Bright" condition, suggesting that the set-point of core temperature has been set at a higher level during the evening and at night, being influenced by the less amount of melatonin secretion. Thus, it is concluded that the late afternoon and evening bright light exposure could accelerate the dressing behavior in the evening cold.  相似文献   

2.
Recent studies show that bright and dim light intensities during the daytime have important regulatory functions. Our present study was performed to evaluate the effect of exposure to different light intensities during the morning and evening on salivary secretion and its sodium concentration. The study involved 6 healthy, female volunteers who were exposed to dim light (100 lx) from 7:00 to 17:00 and to bright light (3000 lx) from 17:00 to 23:00 one day, and to bright light (3000 lx) from 7:00 to 17:00 and dim light (100 lx) from 17:00 to 23:00 on the next day. We collected salivary samples every 10 minutes during 2 hours in the morning and in the evening by means of a Lashley cup. Saliva secretion was stimulated by sweet candy. The amount of saliva secreted was significantly greater in the morning under bright light exposure, while it was significantly greater in the evening under dim light exposure. We discuss these findings in terms of changes in activity of the parasympathetic nervous system (PNS) and sympathetic (SNS) nervous system produced by exposure to different light intensities at different times of the day.  相似文献   

3.
ABSTRACT

Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.  相似文献   

4.
With civilized environments in modern society, since the people tend to depend more on artificial illumination than on natural illumination which makes less discrepancy between day and night life, clarifying the relationship between human life and illumination is necessary. In our previous studies, we found that the subjects dressed faster with thicker clothing in the morning than in the evening when the room temperature decreased from 30 degrees C to 15 degrees C over 1 hour. We considered these results in terms of load error between the actual and set-point values in the core temperature. The present study was designed to examine the effect of bright light (3,000 lx)/dim light (50 lx) exposure (09:30 h-14:30 h) on dressing behavior and thermoregulatory responses in the elderly people during the afternoon cold exposure. Five female subjects were instructed to dress to feel comfortable when the room temperature was decreased from 30 degrees C to 15 degrees C (15:00 h-17:00 h). The subjects felt cooler and dressed more quickly with thicker clothing after dim light exposure, it is conceivable that the set-point value of core temperature is reduced under the bright light condition. We discussed these results in terms of the establishment of set-point values in the core temperature at bright light condition. If the set-point of the core temperature is lower in the bright than in the dim light condition in present experiment, the dressing behavior with thinner clothing in the bright light condition is advantageous, since it enables the core temperature to reach its set-point value more easily.  相似文献   

5.
The present study was conducted to know the effects of different light intensities exposed during daytime for several hours on melatonin excreting rate in urine and tympanic temperature. Eleven healthy female subjects were exposed to bright light of 6000 lx (Bright) or dim light of 100 lx (Dim) during daytime from 09:00 h to 13:30 h, and then the light condition was kept at 100 lx until the end of test at 14:30 h. The urinary samples were collected from 10:00 h to 14:30 h every 1.5 hours, and melatonin excreting rate in urine was measured by enzyme immunoassay. Melatonin excreting rate in urine was significantly higher in Bright than in Dim at 11:30 h and 14:30 h, and not significant but at high level at 13:00 h (p &lt;0.07). Moreover, average tympanic temperatures were significantly lower in Bright than in Dim from 11:43 h to 14:30 h. These results showed that the bright light exposure during daytime could reduce tympanic temperature, which might result from the increase of melatonin level.  相似文献   

6.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

7.
Concentrations of five acute phase proteins: C-reactive protein (CRP), alpha 1-antichymotrypsin (ACT), transferin (Tf), alpha 2-macroglobulin (alpha 2-M) and haptoglobin (Hp) as well as glycosylation profiles of alpha 1-antichymotrypsin (ACT) were studied in sera samples with 7 healthy volunteers under the influence of two different light intensities during the daytime dim (100 lx) and bright (3000 lx) light. Concentration of transferin (negative proteins) under the influence of bright light during the daytime decreased significantly. Other proteins have the tendency to increase (positive proteins) under the influence of daytime bright light. The microheterogeneity of ACT did not change under the influence of different light intensities. Melatonin and rectal temperature were also measured simultaneously. Rectal temperature decreased to be lower during the first half of the night and urinary melatonin secretion rate increased to be higher during the night when the subjects spent time under the bright light during the day. Thus, it is concluded that the diurnal bright light exposure may activate some parameters of acute phase proteins, increase nocturnal melatonin secretion and accelerate a fall of rectal temperature during first half period of night sleep.  相似文献   

8.
Three experiments were conducted to determine whether dim light is interpreted by Japanese quail as subjective day or night, and whether this interpretation depends upon absolute light intensity. Birds were exposed to 24-h days consisting of either bright light (2500-3000 lx) with dim light (0.5-5 lx) or dim light with darkness. Locomotor activity was higher in the brighter photophase, whether it was bright light or dim light, indicating that the birds interpreted the brighter phase as daytime. Dim light produced daytime activity levels when paired with darkness, but it produced nighttime activity when paired with bright light, indicating that activity rhythms are determined by relative not absolute light intensity. Similarly, photostimulation, as measured by growth of the cloacal protrusion area (CPA), depended upon photic context, not absolute light intensity. CPA growth occurred when birds were exposed to 16 h of dim light with 8 h of darkness (16dm:8dk) but not when exposed to 10 h of bright light with 14 h of dim light (10bt:14dm). Constant dim light was stimulatory regardless of previous dim light context. Photostimulation appears to depend upon subjective interpretations of day and night rather than solely upon light intensity.  相似文献   

9.

Background

Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during the day-time might reduce light-induced melatonin suppression (LIMS) at night. The effective proportion of day-time light to night-time light is unclear; however, only a few studies on accurately controlling both day- and night-time conditions have been conducted. This study aims to evaluate the effect of different day-time light intensities on LIMS.

Methods

Twelve male subjects between the ages of 19 and 23 years (mean ± S.D., 20.8 ± 1.1) gave informed consent to participate in this study. They were exposed to various light conditions (<10, 100, 300, 900 and 2700 lx) between the hours of 09:00 and 12:00 (day-time light conditions). They were then exposed to bright light (300 lx) again between 01:00 and 02:30 (night-time light exposure). They provided saliva samples before (00:55) and after night-time light exposure (02:30).

Results

A one-tailed paired t test yielded significant decrements of melatonin concentration after night-time light exposure under day-time dim, 100- and 300-lx light conditions. No significant differences exist in melatonin concentration between pre- and post-night-time light exposure under day-time 900- and 2700-lx light conditions.

Conclusions

Present findings suggest the amount of light exposure needed to prevent LIMS caused by ordinary nocturnal light in individuals who have a general life rhythm (sleep/wake schedule). These findings may be useful in implementing artificial light environments for humans in, for example, hospitals and underground shopping malls.  相似文献   

10.
 The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28° C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx. Received: 22 January 1997 / Revised: 5 April 1997 / Accepted: 26 June 1997  相似文献   

11.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00–15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15–0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04–0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30–06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00–15:00) could enhance parasympathetic activity around midnight.  相似文献   

12.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00-15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15-0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04-0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30-06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00-15:00) could enhance parasympathetic activity around midnight.  相似文献   

13.
1. The study investigated the effect of exposure to 3-h bright light (2500 lx) or dim light (200 lx) just prior to taking a hot bath upon thermophysiological responses during the 1-h bath (at 38.5°C water temperature). 2. Core and forehead skin temperature increases during the bath were significantly lower after bright than after dim light exposure. 3. Heart rate during the bath was significantly lower after exposure to bright light than dim light. 4. These results are discussed in terms of a reduced set-point of core temperature due to a probable higher secretion of melatonin under the bright light condition.  相似文献   

14.
Light exposure was measured in six day and six night watches (working 12-hour shifts five days in a row) during 48 h on work days and 48 h on days off using a photocell with a sensitivity corresponding to photopic vision. The photocell was mounted on a frame of spectacles, thus measuring in viewing direction. Light exposure was low both in night and day watches; however, in night watches exposures were significantly lower: On work days, night watches spent a mean of 13 min above 1,500 lx, day watches 52 min; on days off, night watches spent 3 min above 1,500 lx but day watches 89 min. Unexpectedly, night watches had no higher exposure during days off. We suspect that this is due to a light avoidance tendency in permanent night workers. High negative correlations between the acrophases of subjective state (e.g., alertness and mood) and light exposure in night watches indicate that bright light would probably increase desynchroniza-tion between subjective state, sleep, and activity.  相似文献   

15.
The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.  相似文献   

16.
目的探讨豚鼠在不同光照度照明条件下(10 000,500,5 lx,白色光,色温6000 K)的屈光发育状况,以比较光照度对豚鼠屈光发育的影响。方法 30只3周龄的豚鼠(英国种三色豚鼠),随机分为强光组10只、对照组10只和弱光组10只,分别置于10 000、500、5 lx三种光照度环境下,光照周期为12/12 h(早6:00~晚6:00)。于实验前及光照12周末分别用带状检影计、A超测定仪、角膜曲率计对豚鼠右眼重复进行眼球的生物学测量(包括屈光度、眼轴、角膜曲率)。光照12周结束后处死豚鼠取右眼球行高效液相色谱分析,对不同时间点的组间测量数据采用单因素方差分析,以P<0.05为差异有统计学意义。结果光照前不同组间生物学测量参数差异无显著性(P>0.05)。光照12周后,强光组屈光度为(4.03±1.59)D,同光照前相比发生(0.45±1.65)D的变化,对照组屈光度为(2.15±2.01)D,发生(2.28±0.66)D的变化,强光组同对照组相比远视度数偏高约1.50 D,两者差异有显著性(P<0.05);强光组眼轴增长(0.54±0.10)mm,对照组为(0.76±0.05)mm,强光组较对照组眼轴长度延长较慢,差异有显著性(P<0.05);光照后不同组角膜曲率半径均增加,但组间变化差异无显著性(P>0.05);强光组视网膜多巴胺含量平均为(148.70±22.44)nmol/g,对照组为(44.50±12.45)nmol/g,两者差异有显著性(P<0.001)。光照12周后弱光组较对照组相比,无论是屈光度、曲率、眼轴以及视网膜多巴胺含量均无统计学差异(P>0.05)。结论强光可以引起豚鼠眼球眼轴增长减缓,正视化进展减慢,屈光度数偏远视,弱光对豚鼠的屈光发育没有影响。强光照射后可以引起豚鼠视网膜多巴胺含量增加,可能为强光引起豚鼠正视化进展减缓的机制之一。  相似文献   

17.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

18.

Background

The purpose of the present study is to investigate effects of tryptophan intake and light exposure on melatonin secretion and sleep by modifying tryptophan ingestion at breakfast and light exposure during the daytime, and measuring sleep quality (by using actigraphy and the OSA sleep inventory) and melatonin secretion at night.

Methods

Thirty three male University students (mean ± SD age: 22 ± 3.1 years) completed the experiments lasting 5 days and 4 nights. The subjects were randomly divided into four groups: Poor*Dim (n = 10), meaning a tryptophan-poor breakfast (55 mg/meal) in the morning and dim light environment (<50 lx) during the daytime; Rich*Dim (n = 7), tryptophan-rich breakfast (476 mg/meal) and dim light environment; Poor*Bright (n = 9), tryptophan-poor breakfast and bright light environment (>5,000 lx); and Rich*Bright (n = 7), tryptophan-rich breakfast and bright light.

Results

Saliva melatonin concentrations on the fourth day were significantly lower than on the first day in the Poor*Dim group, whereas they were higher on the fourth day in the Rich*Bright group. Creatinine-adjusted melatonin in urine showed the same direction as saliva melatonin concentrations. These results indicate that the combination of a tryptophan-rich breakfast and bright light exposure during the daytime could promote melatonin secretion at night; further, the observations that the Rich*Bright group had higher melatonin concentrations than the Rich*Dim group, despite no significant differences being observed between the Poor*Dim and Rich*Dim groups nor the Poor*Bright and Rich*Bright groups, suggest that bright light exposure in the daytime is an important contributor to raised melatonin levels in the evening.

Conclusions

This study is the first to report the quantitative effects of changed tryptophan intake at breakfast combined with daytime light exposure on melatonin secretion and sleep quality. Evening saliva melatonin secretion changed significantly and indicated that a tryptophan-rich breakfast and bright light exposure during the daytime promoted melatonin secretion at this time.  相似文献   

19.
Bright light at night improves the alertness of night workers. Melatonin suppression induced by light at night is, however, reported to be a possible risk factor for breast cancer. Short-wavelength light has a strong impact on melatonin suppression. A red-visor cap can cut the short-wavelength light from the upper visual field selectively with no adverse effects on visibility. The purpose of this study was to investigate the effects of a red-visor cap on light-induced melatonin suppression, performance, and sleepiness at night. Eleven healthy young male adults (mean age: 21.2±0.9 yr) volunteered to participate in this study. On the first day, the subjects spent time in dim light (<15 lx) from 20:00 to 03:00 to measure baseline data of nocturnal salivary melatonin concentration. On the second day, the subjects were exposed to light for four hours from 23:00 to 03:00 with a nonvisor cap (500 lx), red-visor cap (approx. 160 lx) and blue-visor cap (approx. 160 lx). Subjective sleepiness and performance of a psychomotor vigilance task (PVT) were also measured on the second day. Compared to salivary melatonin concentration under dim light, the decrease in melatonin concentration was significant in a nonvisor cap condition but was not significant in a red-visor cap condition. The percentages of melatonin suppression in the nonvisor cap and red-visor cap conditions at 4 hours after exposure to light were 52.6±22.4% and 7.7±3.3%, respectively. The red-visor cap had no adverse effect on performance of the PVT, brightness and visual comfort, though it tended to increase subjective sleepiness. These results suggest that a red-visor cap is effective in preventing melatonin suppression with no adverse effects on vigilance performance, brightness and visibility.  相似文献   

20.
We investigated the influence of two different light intensities, dim (100 lx) and bright (5,000 lx), during the daytime on the circadian rhythms of selected acute phase proteins of C‐reactive protein (CRP), α1‐acid glycoprotein (AGP), α1‐antichymotrypsin (ACT), transfferin (TF), α2‐macroglobulin (α2‐m), haptoglobin (HP), and ceruloplasmin (CP). Serum samples were collected from 7 healthy volunteers at 4 h intervals during two separate single 24 h spans during which they were exposed to the respective light intensity conditions. A circadian rhythm was detected only in ACT concentration in the bright light condition. The concentration of ACT, a positive acute phase protein (APP), increased (significantly significant differences in the ACT concentration were detected at 14:00 and 22:00 h) and AGP showed a tendency to be higher under the daytime bright compared to dim light conditions. There were no significant differences between the time point means under daytime dim and bright light conditions for α2‐M, AGP, Tf, Cp, or Hp. The findings suggest that some, but not all, APP may be influenced by the environmental light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号