首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
In a quest to identify new ground-state triplet germylenes, the stabilities (singlet–triplet energy differences, ΔES–T) of 96 singlet (s) and triplet (t) M1-Ge-M2-M3 species were compared and contrasted at the B3LYP/6–311++G**, QCISD(T)/6–311++G**, and CCSD(T)/6–311++G** levels of theory (M1?=?H, Li, Na, K; M2?=?Be, Mg, Ca; M3?=?H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M3?=?F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M3?=?Cl or Br). Triplets with M1?=?K (i.e., the K-Ge-M2-M3 series) seem to be more stable than the corresponding triplets with M1?=?H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M3?=?Cl behave similarly to those with M3?=?Br. Conversely, triplets with M3?=?H show similar stabilities and linearities to those with M3?=?F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M1-Ge-M2-M3 become more stable as the electropositivities of the α-substituents (M1 and M2) and the electronegativity of the β-substituent (M3) increase.  相似文献   

3.
Summary Phosphatidylinositol 3-kinase (PI3K) pathway is important for platelet activation. Recent studies showed that PI3K and oscillative calcium could cross talk to each other and positively regulate integrin α IIbβ3-mediated outside-in signaling. However, the mechanism of this feedback regulation remains to be further characterized. Here we found that treatments of both PI3K inhibitor wortmannin and P2Y1 inhibitor A3P5P could inhibit granular secretion in platelets. Additionally, when RGD-substrate adherent platelets were treated with the ADP scavenger apyrase to deplete the granular-released ADP, their attachments in engaging with substrates became looser and the frequency of calcium oscillation decreased. Since it is known that ADP stimulates the PI3K and calcium signal primarily through P2Y12 and P2Y1 receptors respectively, our data indicated that integrin αIIbβ3 downstream PI3K and calcium activation might be not completely coupled to integrin associated signaling complex, but in part through feedback stimulation by granular released ADP. Our data indicates the important roles of PI3K and granular released ADP in coordinating the feedback regulations in integrin αIIbβ3-mediated platelet activation.  相似文献   

4.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities.
Graphical abstract Possible applications of doped C24 fullerene
  相似文献   

5.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

6.
We designed nine endohedral dodecahedrane heterodimers H@C20Hn-C20Hn@M (M = Cu, Ag, and Au, n = 15, 18, and 19) that may act as single-molecule spin switches, and we predicted theoretically that the ground states of the dimmers shift from low-spin states (S = 0) to the high-spin states (S = 1) under an external electric field applied parallel or perpendicular to the molecular symmetry axes, consisting well with the analyses of Stark effect. Molecular orbitals analyses provide an intuitive insight into the spin crossover behavior. This study expands the application of endohedral chemistry and provides new molecules for designing single-molecule spin switch.  相似文献   

7.
Different subtypes of opioid receptors (OR) were activated in rats in vivo to study the activation effect on the heart’s resistance to ischemia and reperfusion. It has been established that administration of deltorphin II, a selective δ2-OR agonist, lowered the infarct size/area at risk index (IS/AAR) by 23%. Naltrexone, naloxone methiodide (an OR inhibitor not penetrating the blood-brain barrier (BBB)), and naltriben (δ2-antagonist) eliminated the cardioprotective effect of deltorphin II, while BNTX (a δ1-antagonist) produced no effect on the cardioprotective action of the δ2-agonist. The infarct-reducing effect of deltorphin II was eliminated by administration of chelerythrine (a protein kinase C (PKC) inhibitor), glibenclamide (a KATP-channels inhibitor), and 5-hydroxydecanoate (a mitochondrial KATP-channel blocker). Administration of other opioids did not reduce the IS/AAR index. It has been established that all the deltorphins manifest antiarrhythmic potency. Other opioids do not produce any effect on the incidence of arrhythmia occurrences. The antiarrhythmic effect of deltorphin II was eliminated by preliminary administration of naltrexone, naloxone methiodide, and naltriben, but BNTX did not affect the δ2-agonist’s anti-arrhythmic effect. The preliminary administration of chelerythrine, a PKC inhibitor, eliminated the δ2 agonist’s antiarrhythmic action. However, glibenclamide and 5-hydroxydecanoate did not alter the antiarrhythmic effect by deltorphin II. Therefore, activation of the peripheral δ2-ORs reduces the infarct size and prevents the onset of arrhythmias. The antiarrhythmic effect of the δ2-OR stimulation is mediated by activating PKC and opening the mitochondrial KATP-channels. PKC participates in the antiarrhythmic effect of the δ2-OR activation, but this effect does not depend on the condition of KATP-channels.  相似文献   

8.
Cellular mechanical characteristics represent cell ability to produce tissue-specific metabolites. Therefore, to achieve effective cell therapy, a better understanding of the effects of chemo-mechanical stimuli on the mechanical properties of in vitro-treated cells is essential. Herein, we investigated the effects of uniaxial strain on the mechanical properties of mesenchymal stem cells (MSCs) upon transforming growth factor beta 1 (TGF-β1) stimulation. The MSCs were categorized into control and test groups. In one test group, the MSCs were treated by TGF-β1 for 6 d, and in the other, they were additionally subjected to 1-d uniaxial strain on day 2. The cell mechanical properties and smooth muscle (SM) gene expression were assessed on days 2, 4, and 6. During the entire experiment, the MSCs treated by TGF-β1 ± uniaxial strain were induced to differentiate into SM-like cells by significantly upregulation of α-actin, SM22α, and h1-calponin in respect to the control samples. When the MSCs were treated with TGF-β1 alone, their stiffness and viscosity decreased significantly on day 2 and then increased by increase in culture time. When the cells were subjected to 1-d uniaxial strain upon TGF-β1 stimulation, their stiffness and viscosity significantly increased on days 2 and 4 and then decreased on day 6 to a level comparable to that of TGF-β1 group. Different paths were noticeable among the treated samples to reach nearly similar states on day 6. It seems that uniaxial strain activates mechanobiological cascades by which cellular mechanical behavior can be regulated after its removal. However, these effects are transient and would diminish over time. The findings may be helpful in the chemo-mechanical regulation of MSCs.  相似文献   

9.
This investigation generated rovibrational energies and spectroscopic constants for systems of CCl4 with Ng (Ng?=?He, Ne, Ar), O2, D2O and ND3 from scattering experimental data, and the results presented are of interest for microwave spectroscopy studies of small halogenated molecules. The rovibrational spectra were obtained through two different approaches (Dunham and DVR) within the improved Lennard Jones (ILJ) model. Spectra were also generated within ordinary Lennard Jones and deviations suggest that the ILJ model should be preferred due to interactions beyond dispersion forces presented in these systems. Data from the literature and additional high level quantum mechanical calculations presented in this work show that these systems should not be considered as van der Waals complexes due to halogen bonding (HB) interactions, and this is especially true for the CCl4–D2O and CCl4–ND3 complexes. The charge displacement from the latter systems are one order of magnitude higher than the values from literature for CCl4 and He, Ne, Ar and O2 systems, and show significant deviations between DFT and Hartree-Fock values not previously reported in the literature.  相似文献   

10.
A new metal complex, Fe(Sal2dienNO3·H2O) (where Sal is salicylaldehyde and dien is diethylenetriamine), has been synthesized and characterized. The interactions between the Fe(III) complex and calf thymus DNA has been investigated using UV and fluorescence spectra, viscosity, thermal denaturation, and molecular modeling. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can cleave pBR322 DNA.  相似文献   

11.
The nature of M–M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh), the Nb–Nb, Ru–Ru, and Rh–Rh bonds belong to “metallic” bonds, whereas Mo–Mo and Tc–Tc drifted toward the “dative” side; all these bonds are partially covalent in character. The Nb–Nb, Mo–Mo, and Tc–Tc bonds are stronger than Ru–Ru and Rh–Rh bonds. The M–M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M?=?Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds.
Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh)
  相似文献   

12.
Summary The frequency of calcium oscillation reveals the platelet activation status, however, the biological significance of the periodic calcium responses and methods of communication with other integrin-mediated signals are not clear. RGD-containing disintegrin rhodostomin coated substrates were employed to enhance platelet spreading and calcium oscillation through direct binding and clustering of the receptor integrin IIb3. The results showed that the activation of phosphatidylinositol 3-kinase (PI3-K) and internal calcium pathways were crucial for IIb3 outside-in signaling. PI3-K antagonists wortmannin and LY294002 inhibited disintegrin substrates and induced platelet spreading and calcium oscillation. At the same time, pretreatment of platelets with the microsomal calcium–ATPase inhibitor thapsigargin to deplete internal calcium stores severely impaired the calcium oscillation as well as PI3-K activation and spreading on disintegrin substrates. Because inhibition of one pathway could inhibit the other, our data indicates that PI3-K and calcium oscillation are synergistically operated and form a positive-feedback regulation in integrin IIb3-mediated outside-in signaling.  相似文献   

13.
14.
Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. β3 integrins, including αVβ3 and αIIbβ3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin αIIbβ3 are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin αvβ3 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin αvβ3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism (SNP) sites (rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by TaqMan SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin αvβ3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.
  相似文献   

15.
The pathological development of lens epithelial cells (LECs) leads to posterior capsular opacification (PCO). This study was undertaken to investigate the effects of microRNA-486-5p (miR-486-5p) on TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition (EMT) in the lens epithelial cell line SRA01/04, and to explore the underlying molecular mechanisms. The expression of miR-486-5p in TGF-β2-induced SRA01/04 cells was down-regulated, and the expression of Smad2, p-Smad2 and p-Smad3 was up-regulated. A dual-luciferase reporter assay revealed that miR-486-5p directly targets the 3′-UTR of Smad2. MiR-486-5p mimic transfection markedly down-regulated the expression levels of Smad2, thus inhibiting the expression of p-Smad2 and p-Smad3. MiR-486-5p overexpression in SRA01/04 cells markedly suppressed TGF-β2-induced proliferation and invasion, inhibited protein expression of CDK2 and CDK4, down-regulated fibronectin, α-SMA and vimentin and up-regulated E-cadherin; these effects were partly reversed by Smad2 overexpression. In short, these data show that miR-486-5p overexpression can inhibit TGF-β2-induced proliferation, invasion and EMT in SRA01/04 cells by repressing Smad2/Smad3 signalling, implying that miR-486-5p may be an effective target to interfere in the progression of PCO.  相似文献   

16.
Integrins, a family of transmembrane heterodimeric polypeptides, mediate various biological responses including cell adhesion and migration. In this report, we show that sphingosine-1-phosphate (S1P) activates integrin αvβ3 in endothelial cells (ECs) via the sphingosine-1-phosphate receptor subtype 1 (S1P1)-mediated signaling pathway. S1P treatment results in the activation of integrin αvβ3 in the lamellipodia region of ECs, suggesting that integrin αvβ3 plays a critical role in the S1P-stimulated chemotactic response of ECs. Indeed, S1P treatment induces the association of focal adhesion kinase (FAK) and cytoskeletal proteins with integrin αvβ3, the ligation of αv and β3 subunits, as well as enhances endothelial migration on vitronectin-coated substrata. Knockdown endothelial S1P1 receptor, treatments with pertussis toxin or dominant-negative-Rho family GTPases abrogates the S1P-induced integrin αvβ3 activation in ECs. Consequently, these treatments markedly inhibit the S1P-induced endothelial migratory response on vitronectin-coated substrata. Collectively, these data indicate that the S1P-mediated signaling via the S1P1/Gi/Rho GTPases pathway activates integrin αvβ3, which is indispensable for S1P-stimulated chemotactic response of ECs.  相似文献   

17.
The catalytic pyrolysis pathways of carbonyl compounds in coal were systematically studied using density functional theory (DFT), with benzaldehyde (C6H5CHO) employed as a coal-based model compound and ZnO, γ-Al2O3, and CaO as catalysts. The results show that the products of both pyrolysis and catalytic pyrolysis are C6H6 and CO. However, the presence of any of the catalysts changes the reaction pathway and reduces the energy barrier, indicating that these catalysts promote C6H5CHO decomposition.
Graphical abstract The presence of catalysts changes the reaction pathway and the energy barrier decreases in the order Ea (no catalyst)> Ea (CaO)> Ea (γ-Al2O3)> Ea (ZnO), indicating that these catalysts promote C6H5CHO decomposition.
  相似文献   

18.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As).
Graphical abstract Computed density difference plots for the complexes 3?NH 3 (a 1), 3?PH 3 (b 1), 3?AsH 3 (c 1) and electron density shifts for the complexes 3?NH 3 (a 2), 3?PH 3 (b 2),3?AsH 3 (c 2) on the 0.001 a.u. contour
  相似文献   

19.

Background  

Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells.  相似文献   

20.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号