首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM−1 cm−1 for methanol and 97.0 mM−1 cm−1 for diethylether in the QY maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 132-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a QY region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a QY transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807–809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO–RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The effect of light quality on the selection of natural populations of Green Sulfur Bacteria (Chlorobiaceae) is considered to be a classic factor in the determination of their ecological niches. From the comparison among phototrophic bacterial populations of lakes, it is shown that brown and green pigmented groups of Chlorobiaceae have a differential distribution depending on depth. Statistical analyses prove that green species, which dominate at shallow oxic/anoxic boundaries, are correlated to light spectra enriched in long wavelengths, while brown ones are found when light spectra are enriched in the central region of the spectrum, as in deeper lake layers. Physiological experiments have been made withChlorobium limicola andC. phaeobacteroides cultures placed under different light quality conditions, in order to verify these hypotheses made on a field data basis. Results show that red and white light has more positive effects on the green bacterium than on the brown. Blue and green light illuminations have opposite consequences. Therefore, the effect of shallow depths and Chromatiaceae shading—which also increases the proportion of long wavelengths in light spectra—benefits the bacteriochlorophyll-based strategies of green species. On the other hand, the carotenoid-based strategies of brown ones are favored by the light climates usually dominant at greater depths. Thus, brown species are considered to be singular adaptations of Chlorobiaceae to depth, where bacteriochlorophyll light-harvesting is strongly limited by light quality.  相似文献   

3.
We have studied the organization of the bacteriochlorophylls (BChl) in isolated chlorosomes of the green sulfur bacterium Chlorobium limicola UdG6040 containing about 50% BChl d and BChl c each. When the chlorosomes are treated in acidic buffer (pH 3.0) two phases in the conversion from BChl to bacteriopheophytin (BPhe) are observed as evidenced by the changes in the absorption spectrum. In the early phase the pheophytinization of BChl d occurs much faster than that of BChl c. In the later phase BChl c and BChl d are converted at similar rates. The delayed BChl c conversion observed in intact chlorosomes is interpreted in terms of spatial separation within the same chlorosome that makes BChl d more accessible to reaction with acid than BChl c. This was supported by acid treatment of in vitro pigment-lipid aggregates which showed that the pheophytinization of aggregates consisting of only BChl c or BChl d takes place with the same rate. Moreover in mixed in vitro aggrega tes where BChl d and BChl c are supposed to be scrambled the two pigments are converted to BPhe simultaneously. Acid treatment of hexanol exposed chlorosomes indicates that the spatial separation of BChl d and BChl c within the chlorosomes is maintained even if the excitonic interaction between BChls has been disturbed by hexanol. Based on these findings it is suggested that BChl d and BChl c in the chlorosome are located distal and proximal, respectively, relative to the chlorosome baseplate.  相似文献   

4.
Reduced light availability for benthic primary producers as a result of anthropogenic activities may be an important driver of change in coastal seas. However, our knowledge of the minimum light requirements for benthic macroalgae limits our understanding of how these changes may affect primary productivity and the functioning of coastal ecosystems. This knowledge gap is particularly acute in deeper water, where the impacts of increased light attenuation will be most severe. We examined the minimum light requirements of Anotrichium crinitum, which dominates near the maximum depth limit for macroalgae throughout New Zealand and Southern Australia, and is a functional analog of rhodophyte macroalgae in temperate low‐light (deep‐water) habitats throughout the world. These data show that A. crinitum is a shade‐adapted seaweed with modest light requirements for the initiation of net photosynthesis (1.49–2.25 μmol photons · m?2 · s?1) and growth (0.12–0.19 mol photons · m?2 · d?1). A. crinitum maintains high photosynthetic efficiency and pigment content and a low C:N ratio throughout the year and can maintain biomass under sub‐compensation (critical) light levels for at least 5 d. Nevertheless, in situ photon flux is less than the minimum light requirement for A. crinitum on at least 103 d per annum and is rarely sufficient to saturate growth. These findings reinforce the importance of understanding the physiological response of macroalgae at the extremes of environmental gradients and highlight the need to establish minimum thresholds that modification of the subtidal light environment should not cross.  相似文献   

5.
Reduction of cytochromes in chlorosome-free membranes of Chlorobia was studied anaerobically, with an LED array spectrophotometer. For Chlorobium tepidum these membranes contained 0.2 moles cytochrome per mole of bacteriochlorophyll a. The observed change upon complete reduction of oxidized membranes with dithionite could be satisfactorily fitted with three cytochrome components having absorption peaks at 553 (cyt c), 558 and 563 nm (cyt b), in relative amounts of 5:1:2. About 20% of total cytochrome 553 were reducible by ascorbate. Menaquinol reduced all of the 553-component, and this reduction was sensitive to stigmatellin, NQNO and antimycin A. The reduction was insensitive to KCN. However, it was transient at low concentrations of menaquinol in the absence of KCN, but permanent in its presence, demonstrating that electron transport into an oxidation pool was blocked. The 563-component was only slightly reduced by menaquinol unless NQNO or antimycin were present. The stimulation of cytochrome 563-reduction by these inhibitors was more pronounced in the presence of ferricyanide. This phenomenon reflects oxidant-induced reduction of cytochrome b and demonstrates that a Q-cycle is operative in Chlorobia. Also, sulfide fully reduced cytochrome 553, but more slowly than menaquinol. KCN inhibited in this case, as did stigmatellin, NQNO and antimycin A. NQNO was a better inhibitor than antimycin A. Cytochrome 563 again was hardly reduced unless antimycin A was added. The effect was more difficult to observe with NQNO. This supports the conclusion that sulfide oxidation proceeds via the quinone pool and the cytochrome bc-complex in green sulfur bacteria.Abbreviations BChl bacteriochlorophyll - cyt cytochrome - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - SQR sulfide-quinone reductase Dedicated to Prof. Dr. Aloys Wild on occasion of his 65th birthday.  相似文献   

6.
Verticillium agaricinum (Link) Corda, grown in a yeast extract-sucrose medium, conidiated abundantly in darkness after irradiation with near ultraviolet (290–400 nm) for 15 min or blue light (400–550 nm) for 60 min. Few conidia were formed in total darkness. Exposure to 30 min of near ultraviolet light suppressed conidiation. Conidiation was also suppressed by phosphate in excess of 10−4 M irrespective of light condition. After irradiation with near ultraviolet light for more than 30 min, there was a cessation of growth and a change in colony color from yellow to reddish. The color does not appear to be due to a carotenoid because the colonies turned from red to yellow when covered with acid. At pH lower than 6.0 the pigment has an absorption maximum around 390 nm, whereas at higher pH it is around 540 nm. Thus, it appears that irradiation of V. agaricinum with near ultraviolet may cause an increase in pH, which in turn produces the change of colony color from yellow to reddish.  相似文献   

7.
8.
We have investigated the changes in the pigment composition and organisation of the light-harvesting apparatus of the green sulfur bacterium Chlorobium tepidum growing under different light intensities. Cells grown at lower light intensities had lower exponential growth rates and increased amounts of the main light-harvesting pigments, bacteriochlorophyll c and carotenoids, on a cell protein basis. Absorption spectra of chlorosomes isolated from cells grown at low light intensities revealed a red-shift of up to 8 nm in the Qy band of bacteriochlorophyll c compared to chlorosomes from high light grown cells. A similar red-shift of up to 4 nm was also observed in the corresponding fluorescence emission peaks. HPLC analysis of pigment extracts showed a correlation between the red-shift and the content of the more alkylated BChl c homologs, which increased as light intensity for growth was lower. Furthermore, analysis of the carotenoid composition in chlorosomes re vealed a conspicuous change in the ratio between chlorobactene and 1, 2-dihydrochlorobactene, which dramatically decreased from 5 to 0.7 in light-limited cultures.  相似文献   

9.
The growth response of Coelastrum proboscideum Bohlin to cadmiun (3 × 10?9M to 2.4 × 10?7M) was studied. The inorganic media used varied in zinc concentration (1.3 × 10?7M to 3.6 × 10?6M). The data were evaluated by factorial analyses. The influence of zine on the growth depression by cadmium depended on the light conditions (16:8 h light:dark cycles or 24 h continuous illumination periods). Intermittent illumination caused a negative interaction of zinc and cadmium in contrast to a positive interaction or additive effects of these elements during continuous illumination.  相似文献   

10.
生长环境光强对两种热带雨林树种幼苗光合作用的影响   总被引:33,自引:0,他引:33  
以西双版纳热带雨林中演替后期种绒毛番龙眼和先锋树种山黄麻为材料 ,于雾凉季测定了不同光强下生长的 2种树苗叶片最大净光合速率 (Pmax)、叶绿素荧光参数以及光合色素含量和比叶重 (L MA) ,探讨了不同生态习性热带雨林树种幼苗对光强的适应及光保护机制。发现在一定光强范围内随生长环境光强的增加 ,2种树苗 L MA、荧光的非化学猝灭 (N PQ)、类胡萝卜素(Car)含量、Car与叶绿素 (Chl)之比升高 ,光饱和点和光补偿点也有随生长环境光强的增大而升高的趋势 ,Chl含量降低 ,2种树苗均能通过形态和生理特性的变化适应不同的光强环境。相同的生长光强下 ,绒毛番龙眼光抑制明显比山黄麻重 ,山黄麻适应强光的能力强。随生长环境光强的增加 ,山黄麻 N PQ增加不显著 ,热耗散较少 ,相同光强下其 Pmax显著高于绒毛番龙眼。绒毛番龙眼则相反 ,其热耗散随生长环境光强的升高显著增多 ,但 Pmax差异不显著。表明先锋种山黄麻主要通过提高 Pmax利用光能防止光合机构光破坏 ,而演替后期种绒毛番龙眼却较大程度通过增强非光化学猝灭来耗散过量光能。上午人为降低光强度对先锋种山黄麻影响不大 ,但可以明显缓解绒毛番龙眼的光抑制 ,表明上午一定程度的遮光 (如有雾 )可减缓绒毛番龙眼光抑制  相似文献   

11.
采用土培实验研究了25mg/kg镉处理下全光照(HL)、50%全光照(ML)和10%全光照(LL)三种生长光强对紫茉莉生长、光合作用和镉积累相关指标的影响,结果表明,紫茉莉对镉具有较高的耐性,ML对紫茉莉的生长最为有利。镉胁迫下紫茉莉净光合速率和最大光化学效率降低,暗呼吸速率增高,生物量减小。特别在高光强条件下。ML植株镉积累量最大,对镉污染土壤的植物修复效果较好。  相似文献   

12.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

13.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

14.
为了探索番茄幼苗生长发育对红蓝组合光的响应机制,本试验采用发光二极管(LED)精量调制光源,以番茄品种‘SV0313TG’为试材,设红光(R)、蓝光(B)和红蓝组合光(9R1B、6R1B、3R1B、1R1B、1R3B)7个处理,以白光为对照,研究不同比例红蓝光质对番茄幼苗生长、光合色素含量、光合特性、叶绿素荧光参数及根系活力的影响.结果表明:不同比例红蓝光质处理对番茄幼苗生长的影响具有明显差异.红光显著促进幼苗株高增加,比叶面积增大,胞间CO2浓度提高,但PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ФPS)降低,根系生长受阻,根系活力下降,壮苗指数降低;蓝光下幼苗生长受到明显抑制,叶绿素含量降低,但叶绿素a/b 值升高;红蓝组合光有利于番茄幼苗的生长发育,3R1B处理下植株干物质量、叶绿素含量和光合性能均显著提高,幼苗生长健壮,壮苗指数最大.综上,红蓝组合光能够增加番茄幼苗叶片光合色素含量,提高光合效率,促进植株生长,尤以3R1B处理最佳.  相似文献   

15.
In nature, photosynthetic organisms are exposed to fluctuating light, and their physiological systems must adapt to this fluctuation. To maintain homeostasis, these organisms have a light fluctuation photoprotective mechanism, which functions in both photosystems and metabolism. Although the photoprotective mechanisms functioning in the photosystem have been studied, it is unclear how metabolism responds to light fluctuations within a few seconds. In the present study, we investigated the metabolic response of Synechocystis sp. PCC 6803 to light fluctuations using 13C-metabolic flux analysis. The light intensity and duty ratio were adjusted such that the total number of photons or the light intensity during the low-light phase was equal. Light fluctuations affected cell growth and photosynthetic activity under the experimental conditions. However, metabolic flux distributions and cofactor production rates were not affected by the light fluctuations. Furthermore, the estimated ATP and NADPH production rates in the photosystems suggest that NADPH-consuming electron dissipation occurs under fluctuating light conditions. Although we focused on the water–water cycle as the electron dissipation path, no growth effect was observed in an flv3-disrupted strain under fluctuating light, suggesting that another path contributes to electron dissipation under these conditions.  相似文献   

16.
Hypocotyl growth in Sinapis alba L: the roles of light quality and quantity   总被引:3,自引:3,他引:0  
Abstract. A comparison is made of the relative effectiveness of light quality and light quantity on the elongation growth of Sinapis alba hypocotyls. The results show that hypocotyl extension rate in plants which have not previously been exposed to light is controlled primarily by the prevailing photon fluence rate when the phytochrome photostationary state lies between ∼0.033 and ∼0.81. Below ∼0.033, changes in photostationary state also have a marked effect on extension rate. Elongation growth in light-adapted plants is controlled by both photon fluence rate and the spectral quality of the incident radiation at all photoequilibria. Photosynthesis can modify these responses but is not essential as a prior condition for a green plant to respond to changes in light quality and quantity.  相似文献   

17.
Abstract. The effect of chlorophyll fluoresence on the spectral light gradients within a model green leaf was examined under different light qualities (day-light, sunset, canopy) and different quantum efficiencies. Light fluxes within the leaf tissue are nearly doubled in the emission domain of fluorescence but the effect on the phytochrome photoequilibrium is very small.  相似文献   

18.
A comparative study on the effects of photon flux density and spectral quality on photosynthesis and respiration in the marine red alga Porphyra yezoensis Ueda was conducted using a light dispenser. Results showed that the photosynthetic response, expressed in light utilization efficiency (LUE) for preselected wave bands of photosynthetically active radiation, could be ranked as follows: white > green > red > blue. Differences in LUE were also found between conchocelis and gametophyte stages and different strains of the alga. Pre-illumination light compensation, post-illumination light compensation, light saturation, respiration and photorespiration were also measured and compared. The relationships between light exposure, photosynthetic capacity, and the natural environmental conditions are discussed.  相似文献   

19.
A dependence of the photosynthesis rate on light is characterized by a number of parameters that are often used for comparison between plant species or for finding photosynthesis interconnections with other physiological processes. In order to properly assessed these parameters, we measured the maximum apparent photosynthesis rate (P max), dark respiration rate (R d), light compensation point (LCP), quantum yield corresponding to photosynthetic efficiency (QY), and the light saturation constant (K s), taking into consideration the leaf plastochron index during vegetation of one of the willow species (Salix dasyclados Wimn.). The P max value was the highest in the beginning of the growth season when the leaf reached 65% of its full area; after that P max slowly declined. The most important cardinal value for R d is its plateau reached by the end of leaf growth, i.e., later than the photosynthesis rate maximum. This plateau value also decreased during vegetation. The LCP value changed in the same way as R d but reached its plateau simultaneously with the photosynthesis rate maximum. QY also reached its maximum at the same time with the photosynthesis rate; during vegetation it changed more than twofold. The K s value also changed almost twofold during the season, reaching its maximum together or slightly later than the photosynthesis maximum and then remained constant. Thus, we have found significant changes in the parameters of the photosynthesis light curve during growth season. This shows that they can be used only after a thorough study of leaf development in each particular plant species. Usually performed measuring gas exchange parameters in fully developed leaves does not yield their maximum values and thus does not have any physiological sense.  相似文献   

20.
Abstract. A system is described whereby seedling development can be analysed in terms of growth rates of specific 1 mm regions of the hypocotyl. The technique involves time-lapse photography of marked hypocotyls in a specially designed chamber which accommodates seedlings in various orientations with respect to gravity, and under irradiation regimes differing in light quality, quantity and direction. The results of a preliminary study of the upward growth of etiolated or green cress seedlings in darkness or overhead while light are reported. Highest growth rates in etiolated seedlings were observed in zones in the upper one-third of ihe hypocotyl. In green seedlings, growth was more prominent within the subapical zones. Light further restricted growth of the median and basal zones in both types of seedling. However, in their immediate responses to the onset of irradiation, green and etiolated seedlings differed markedly. In etiolated seedlings, recovery of growth at the apex was accompanied by the development of inhibition in the median-basal regions; green seedlings showed a transient inhibition of growth in the apical zone together with a strong immediate inhibition in the median-basal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号