首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-μm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed.  相似文献   

2.
Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-microm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed.  相似文献   

3.
Abstract The interaction between the purple sulfur bacterium Thiocapsa roseopersicina and the green sulfur bacterium Prosthecochloris aestuarii was studied in a gradient chamber under a 16-hours light-8-hours dark regime. The effects of interaction were inferred by comparing the final outcome of a mixed culture experiment with those of the respective axenic cultures using the same inoculation densities and experimental conditions. Densities of bacteria were deduced from radiance microprofiles, and the chemical microenvironment was investigated with O2, H2S, and pH microelectrodes. P. aestuarii always formed a biofilm below the maximal oxygen penetration depth and its metabolism was strictly phototrophic. In contrast, T. roseopersicina formed a bilayer in both the mixed and the axenic culture. The top layer formed by the latter organism was exposed to oxygen, and chemotrophic sulfide oxidation took place during the dark periods, while the bottom layer grew phototrophically during the light periods only. In the mixed culture, the relative density of P. aestuarii was lower than in the axenic culture, which reflects the effects of the competition for sulfide. However, the relative density of T. roseopersicina was actually higher in the mixed culture than in the corresponding axenic culture, indicating a higher growth yield on sulfide in the mixed culture experiment. Several hypotheses are proposed to explain the effects of the interaction. Received: 15 June 1998; Accepted: 18 January 1999  相似文献   

4.
Microalgal biofilms are associated with considerable variability in the properties of natural sediments, yet little effort has been made to isolate micro-scale spatial and temporal changes in sediment properties caused by the growth of a biofilm. Understanding the changes associated with biofilm growth and quantifying the time scales over which these changes occur is important for developing suitable experimental designs and for understanding how biofilms mediate sediment properties and processes. The development of a microphytobenthic biofilm and associated changes in the sediment was investigated over 45 days in the laboratory. The biogeochemical properties of the sediment: bulk density, water content, chlorophyll a concentration and colloidal carbohydrate concentration were measured on a sub-millimetre scale in the top 2 mm. The erosion threshold was measured with a Cohesive Strength Meter (CSM). Biofilm development was rapid, with changes in the properties occurring after 1 day and a visible film forming after just 3 days. The largest changes in sediment properties tended to occur in the surface 200 μm through time, with some variables also showing a differing response with depth. There were significant changes in water content, chlorophyll a concentration, colloidal carbohydrate concentration and erosion threshold in the surface 2 mm, with a general trend to increase with time. Bulk density was highly variable and did not show a consistent pattern of change with time. Erosion threshold was positively correlated with water content, chlorophyll a and colloidal carbohydrate in the surface 200 μm and these were also positively correlated with each other. Low Temperature Scanning Electron Microscopy (LTSEM) images revealed changes in the surface sediment structure and the formation of a thick multi-layer biofilm. The rapidity of biofilm growth and development and the associated changes to the sediment should be considered when designing experiments that investigate biofilms and properties of sediments and/or that involve biocide treatments or disturbance to the sediment.  相似文献   

5.
Sulfur cycling was investigated in carbonate-rich and iron-poor sediments vegetated with Posidonia oceanica in oligotrophic Mediterranean around Mallorca Island, Spain, to quantify sulfate reduction and pools of sulfide in seagrass sediments. The oxygen penetration depth was low (< 4.5 mm) and sulfate reduction rates were relatively high (0.7–12 mmol m–2d–1). The total pools of reduced sulfides were remarkably low (< 5 mol S m–2) indicating a fast turnover of reduced sulfides in these iron-poor sediments. The sulfate reduction rates were generally higher in vegetated compared to bare sediments possible due to enhanced sedimentation of sestonic material inside the seagrass meadows. The sulfate reduction rates were positively correlated with the seasonal variation in water temperature and negatively correlated with the shoot density indicating that the microbial activity was controlled by temperature and release of oxygen from the roots. The pools of reduced sulfides were low in these iron-poor sediments leading to high oxygen consumption for reoxidation. The sediments were highly anoxic as shown by relatively low oxygen penetration depths (< 4.5 mm) in these low organic sediments. The net shoot recruitment rate was negative in sediments enriched with organic matter, suggesting that organic matter enrichment may be an important factor for seagrass status in these iron-depleted carbonate sediments.  相似文献   

6.
7.
Abstract: The growth of phototrophic sulfur bacteria in benthic systems is restricted to well-defined layers within the sedimentary oxygen, sulfide, pH and light gradients. In order to culture these microorganisms under more ecologically relevant conditions, we have developed a Benthic Gradient Chamber (BGC) in which phototrophic sulfur bacteria can be grown within experimentally imposed solute and light gradients. The new autoclavable device is composed of a reconstituted sand core sandwiched in between a lower anoxic sulfide-containing compartment and an upper oxic compartment. The core can be illuminated from above by a collimated light beam. An axenic biofilm of Thiocapsa roseopersicina strain EP 2204 developed from a tiny inoculum within the sand core, using a 5-week incubation period and a 16:8 h light/dark illumination regime. The metabolic activities in this biofilm were inferred from the analyses of oxygen, sulfide and pH profiles, and their shifts during light-dark cycles.  相似文献   

8.
为研究中国长足摇蚊幼虫(Tanypus chinensis)和霍普水丝蚓(Limnodrilus hoffmeisteri)扰动对表层沉积物氧气渗透及空间分布的影响,采集梅梁湾表层沉积物,借助高精度溶氧微电极,研究两种生物扰动作用下,太湖梅梁湾表层沉积物氧气渗透深度和空间分布的变化,并根据氧气在流动培养体系中浓度的变化和在扩散边界层中的扩散过程这两种方法计算界面氧气交换速率。结果表明,中国长足摇蚊幼虫和霍普水丝蚓两种底栖生物扰动均能提高沉积物界面氧气交换速率,且微电极法的计算值要低于流动培养法。通过溶氧微电极剖面能够准确的获得氧气渗透深度的信息。结果发现:长足摇蚊幼虫的扰动能提高沉积物氧气渗透深度并造成氧气在沉积物内空间分布的差异,长足摇蚊幼虫扰动后沉积物氧气渗透深度由无扰动的6 mm增至10 mm。与长足摇蚊幼虫相比,霍普水丝蚓扰动没有增加沉积物氧气渗透深度及造成空间分布差异。对比两种计算方法发现,在生物扰动作用下,由于生物作用的影响,根据氧气在扩散边界层的扩散得到的值可能会低估氧气的界面交换速率。    相似文献   

9.
Recruitment of seaweeds through small reproductive stages is limited on sediment inundated rocky shores and largely unsuccessful in soft sediment environments. Burial in sediment has several potentially negative effects for seaweed propagules, and these effects were differentiated in a laboratory experiment. We investigated how light deprivation, sediment type (grain size, organic content, and origin), and sediment chemistry (oxygen presence and toxicity through hydrogen sulfide) affected survivorship and growth of Fucus serratus L. embryos. Presence of hydrogen sulfide had overriding negative impacts on both survivorship and growth of Fucus embryos, independently of sediment type and light availability. In contrast, simple anaerobiosis generally did not impair survival or growth of the embryos. Fine sediments, 3 mm thick, significantly reduced embryo survivorship, presumably through accumulation of metabolic waste products in the immediate vicinity of the embryos as a consequence of constrained diffusion. This effect was equally pronounced in the presence of a 1‐mm layer of organically rich biodeposits. Irradiance levels did not affect survival of embryos but influenced growth. Decreasing thickness and increasing coarseness of sediments together represented a gradient of enhanced light penetration and diffusion. Growth of embryos increased along this gradient. In nature, soft sediment environments with organically enriched muds (e.g. tidal flats and salt marshes) represent habitats least favorable for colonization through small reproductive stages of seaweeds.  相似文献   

10.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

11.
Laboratory experiments and field measurements were conducted to examine the effect of tide on the organic carbon mineralization rate in sediments under aerobic conditions of an intertidal estuary. Core samples of surface sediments were collected from an intertidal estuary of the Kurose River, Hiroshima, Japan. To mimic low and high tide in the intertidal estuary, organic carbon mineralization rates in the samples were measured in the laboratory under both air-exposed and submerged conditions. Mineralization rates under air-exposed conditions were two to five times higher than those under submerged conditions. Field measurements of the rate of CO2 emission from the sediment surface revealed a rapid increase in the rate as the sea level fell during ebb tide. The estimated amount of daily organic carbon mineralization assuming a constantly submerged condition was 30% less than that estimated when considering the semi-diurnal fluctuation in sea level. These results indicate that tide has a marked impact on the organic carbon mineralization rate in sediments under aerobic conditions on an intertidal estuary, and tidal effects need to be considered when the amount of mineralized organic carbon is estimated.  相似文献   

12.
The distribution of nitrification potential (NP) with depth in sediment and season was investigated in a shallow sandy sediment (0.5 m water) and a deeper muddy sediment (17m water). In both sediments, nitrifying bacteria were present in the anoxic strata (oxygen penetration was 5 mm below the surface). The NP at 6–8 cm depth in the sediment was 50% and 10% of the surface NP at the sandy and muddy sediment, respectively. It is suggested that bioturbation and physical disturbance of the sediment were the most likely reasons for this distribution. The NP increased as sediment temperature decreased. This effect was less marked in the muddy sediment. It is concluded that during the summer, the numbers or specific activity of nitrifying bacteria diminished for the following reasons: There was decreased O2 penetration into the sediment and increased competition for O2 by heterotrophs; there was increased competition for NH4 + and there was inhibition by H2S. These effects counteracted the potentially higher growth rates and increased rates of NH4 + production at the elevated summer temperatures. The potential nitrification rates in the upper 1 cm, which were measured at 22°C, were converted to calculated rates at the in situ temperature (Q10=2.5) and in situ oxygen penetration. These calculated rates were shown to closely resemble the measured in situ rates of nitrification. The relationship between the in situ rates of nitrification and the nitrification potential is discussed.  相似文献   

13.
Abstract The vertical zonation of light, O2, H2S, pH, and sulfur bacteria was studied in two benthic cyanobacterial mats from hypersaline ponds at Guerrero Negro, baja California, Mexico. The physical-chemical gradients were analyzed in the upper few mm at ≥ 100 μm spatial resolution by microelectrodes and by a fiber optic microprobe. In mats, where oxygen produced by photosynthesis diffused far below the depth of the photic zone, colorless sulfur bacteria ( Beggiatoa sp.) were the dominant sulfide oxidizing organisms. In a mat, where the O2–H2S interface was close to the photic zone, but yet received no significant visible light, purple sulfur bacteria ( Chromatium sp.) were the dominant sulfide oxidizers. Analysis of the spectral light distribution heare showed that the penetration of only 1% of the incident near-IR light (800–900 nm) into the sulfide zone was sufficient for the development of Chromatium in a narrow band of 300 μm thickness. The balance betweem O2 and light penetration down into the sulfide zone thus deterined in mcro-scale which type of sulfur bacteria becamed dominant.  相似文献   

14.
The photosynthetic performance of an epilithic cyano-bacterial biofilm was studied in relation to the in situ light field by the use of combined microsensor measurements of O2, photosynthesis, and spectral scalar irradiance. The high density of the dominant filamentous cyanobacteria (Oscillatoria sp.) embedded in a matrix of exopolymers and bacteria resulted in a photic zone of < 0.7 mm. At the biofilm surface, the prevailing irradiance and spectral composition were significantly different from the incident light. Multiple scattering led to an intensity maximum for photic light (400–700 nm) of ca. 120% of incident quantum irradiance at the biofilm surface. At the bottom of the euphotic zone in the biofilm, light was attenuated strongly to < 5–10% of the incident surface irradiance. Strong spectral signals from chlorophyll a (440 and 675 nm) and phycobilins (phycoerythrin 540–570 nm, phycocyanin 615–625 nm) were observed as distinct maxima in the scalar irradiance attenuation spectra in the upper 0.0–0.5 mm of the biofilm. The action spectrum for photosynthesis in the cyanobacterial layer revealed peak photosynthetic activity at absorption wavelengths of phycobilins, whereas only low photosynthesis rates were induced by light absorption of carotenoids (450–550 nm). Respiration rates in light- and dark-incubated biofilms were determined using simple flux calculations on measured O2 concentration profiles and photosynthetic rates. A significantly higher areal O2 consumption was found in illuminated biofilms than in dark-incubated biofilms. Although photorespiration accounted for part of the increase, the enhanced areal O2 consumption of illuminated biofilms could also be ascribed to a deeper oxygen penetration in light as well as an enhanced volumetric O2 respiration in and below the photic zone. Gross photosynthesis was largely unaffected by increasing flow velocities, whereas the O2 flux out of the photic zone, that is, net photosynthesis, increased with flow velocity. Consequently, the amount of produced O2 consumed within the biofilm decreased with increasing flow velocity. Our data indicated a close coupling of photosynthesis and respiration in biofilms, where the dissolved inorganic carbon requirement of the photo-synthetic population may largely be covered by the respiration of closely associated populations of heterotrophic bacteria consuming a significant part of the photosynthetically produced oxygen and organic carbon.  相似文献   

15.
Red and near-infrared (NIR) light effect on Ca2+ ions flux through the influence on N-methyl-D-aspartate receptors (NMDARs) and their functioning in HeLa cells was studied in vitro. Cells were irradiated by 650 and 808 nm laser light at different power densities and doses and the obtained effect was compared with that caused by the pharmacological agents. The laser light was found to elevate Ca2+ influx into cell cytoplasm in a dose-dependent manner without changes of the NMDAR functioning. Furthermore, the light of both wavelengths demonstrated the ability to elevate Ca2+ influx under the pharmacological blockade of NMDARs and also might partially abolish the blockade enhancing Ca2+ influx after selective stimulation of the receptors with NMDA. Simultaneously, the light at moderate doses demonstrated a photobiostimulating effect on cells. Based on our experiments and data reported in the literature, we suggest that the low-power visible and NIR light can instigate a cell membrane depolarization via nonthermal activation, resulting in the fast induction of Ca2+ influx into cells. The obtained results also demonstrate that NIR light can be used for nonthermal and nonpharmacological stimulation of NMDARs in cancer cells.  相似文献   

16.
The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O(2) concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ~700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of E(k) (saturating irradiance) >250 μmol photons m(-2) s(-1) for blue light but no clear saturation at 365 μmol photons m(-2) s(-1) for NIR. The maximal gross photosynthesis rates in the aggregates were ~1,272 μmol O(2) mg Chl d(-1) h(-1) (NIR) and ~1,128 μmol O(2) mg Chl d(-1) h(-1) (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10(-6) m(2) mg Chl d(-1) (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10(-6) m(2) mg Chl d(-1)]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O(2) conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions.  相似文献   

17.
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments.  相似文献   

18.
Abstract The microbial mat was chosen as a model ecosystem to study dynamics of dimethyl sulfide (DMS) in marine sediments in order to gain insight into key processes and factors which determine emission rates. A practical advantage, compared to open ocean ecosystems, is that microbial mats contain high biomasses of different functional groups of bacteria involved in DMS dynamics, and that DMS concentrations are generally high enough to allow direct measurement of emission rates. Field data showed that, during the seasonal development of microbial mats, concentrations of chlorophyll a corresponded to dimethylsulfoniopropionate (DMSP). DMSP is an important precursor of DMS. It was demonstrated, with laboratory cultures, that various species of benthic diatoms produce substantial amounts of DMSP. The abundances of aerobic and anaerobic DMS- or DMSO-utilizing bacteria were estimated using the most-probable-number technique. Laboratory experiments with relatively undisturbed sediment cores showed that microbial mats act as a sink for DMS under oxic/light (day) conditions, and as a source of DMS under anoxic/dark (night) conditions. Axenic culture studies with Chromatium vinosum M2 and Thiocapsa pfennigii M8 (isolated from a microbial mat) showed that, under anoxic/light conditions, DMS was quantitatively converted to dimethylsulfoxide (DMSO). T. roseopersicina M11 converted DMSP to DMS and acrylate, apparently without use of either substrate. Received: 5 May 1997; Accepted: 21 August 1997  相似文献   

19.
Structure and development of a benthic marine microbial mat   总被引:9,自引:0,他引:9  
Abstract Vertically stratified microbial communities of phototrophic bacteria in the upper intertidal zones of the North Sea island of Mellum were investigated. Growth and population dynamics of the cyanobacterial mat were followed over three successive years. It was concluded that the initial colonization of the sandy sediments was by the cyanobacterium Oscillatoria . In well-established mats, however, the dominant organism was Microcoleus chthonoplastes . The observed succession of cyanobacteria during mat development is correlated with nitrogen fixation. Nitrogen fixation is necessary in this low-nutrient environment to ensure colonization by mat-constructing cyanobacteria. Under certain conditions, a red layer of purple sulfur bacteria developed underneath the cyanobacterial mat in which Chromatium and Thiocapsa spp. dominated, but Thiopedia and Ectothiorhodospira spp. have also been observed. Measurements of light penetrating the cyanobacterial mat indicated that sufficient light is available for the photosynthetic growth of purple sulfur bacteria. Profiles of oxygen, sulfide and redox potential within the microbial mat were measured using microelectrodes. Maximum oxygen concentrations, measured at a depth of 0.7 mm, reached levels more than twice the normal air saturation. Dissolved sulfide was not detected by the microelectrodes. Determination of acid-distilled sulfide, however, revealed appreciable amounts of bound sulfide in the mat. Redox profiles measured in the mat led to the conclusion that the upper 10 mm of the sedimentary sequence is in a relatively oxidized state.  相似文献   

20.
Abstract We conducted a 2-year in situ experiment to test the capacity of iron additions to reverse the decline experienced by a Posidonia oceanica meadow colonizing carbonate, iron poor sediment. Iron additions improved the sediment conditions that support seagrass growth by decreasing the sediment sulfide concentration and sulfate reduction rates, and decreased sulfide intrusion into the plants. Iron additions for 2 years did not significantly change survivorship of shoots present at the onset of the experiment, but significantly increased shoot recruitment and survivorship of shoots recruited during the experiment. After 2 years, iron additions reversed seagrass decline and yielded positive growth rates of shoots relative to control populations where seagrass continued to decline. This research demonstrates that seagrass decline in carbonate sediments may be reversed by targeting critical processes such are sediment sulfide pools and seagrass nutritional status, controlling the functioning of the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号