首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaH14CO3, a poorly reutilized biosynthesis precursor, was used to study the rate of whole microsomal protein degradation in mouse liver. The use of the precursors, however, does not prevent the reutilization of labeled amino acids on phenobarbital administration. To avoid reutilization, a new method has been developed. It was shown that phenobarbital injections have no effect on the degradation rate of the whole microsomal protein. The effect of amidopyrine, a monooxygenase microsomal system substrate, on the rate of whole microsomal protein degradation was examined. An experimental model was developed, in which the monooxygenase microsomal system substrate does not exhibit the properties of its inducer. Amidopyrine administration to mice simultaneously with phenobarbital induction has no effect on the degradation rate of the whole microsomal protein.  相似文献   

2.
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450.  相似文献   

3.
The role of adrenergic and cholinergic neural regulation in the functional activity of the liver microsomal oxidation enzymes has been studied. The experiments on adult and old rats using surgical denervation of the liver (vagotomy and sympathectomy++) have revealed changes in the monooxygenase activity (aminopyrine demethylase and aniline hydroxylase), in isoform composition and inductive synthesis of cytochrome P-450. The neural control over detoxication function of the liver is found to weaken in old age.  相似文献   

4.
The content and activity of the components of liver microsomal aryl hydrocarbon monooxygenase system change biphasically during long-term 3,4-benzo-(a)pyrene administration to C57BL/6 mice as well as to (C57BL/6 × DBA/2)F1 hybrids. The first activity peak (4–14 days) is associated with the induction of aryl hydrocarbon monooxygenase by 3,4-benzo(a)pyrene; the second peak (70–84 days) is related to noninductive mechanism. In DBA/2 mice, the second peak is absent while the slight increase in aryl hydrocarbon monooxygenase activity observed on days 14–28 indicated the aberrant inductive capacity of 3,4-benzo(a)pyrene under its prolonged administration. It is suggested that the weak sensitivity to the blastogenesis caused by 3,4-benzo(a)pyrene observed in C57BL/6 mice and in (C57BL/6 × DBA/2)F1 hybrids is due to the high level of liver aryl hydrocarbon monooxygenase activity at the time of tumor appearance.  相似文献   

5.
Styrene monooxygenase activity was measured in intact nuclear preparations from rat liver by means of a gas chromatographic method. Styrene epoxide formation is NADPH-dependent although it is enhanced when NADH is added with NADPH. This activity is inhibited by microsomal monooxygenase inhibitors SKF 525A and metyrapone and by microsomal epoxide hydrase inhibitors 1,2-epoxy-3,3,3-trichloropropene oxide and cyclohexene oxide. The percentage of inhibition is quantitatively dffferent for the four compounds. Known inducers of liver microsomal monooxygenase show different patterns of induction on nuclear preparations. Phenobarbital induces nuclear monooxygenase activity more than the respective microsomal activity, whereas the contrary holds true for β-naphthoflavone.  相似文献   

6.
The content and activity of the components of liver microsomal aryl hydrocarbon monooxygenase system change biphasically during long-term 3,4-benzo(a)pyrene administration of C57BL/6 mice as well as to (C57BL/6 X DBA/2)F1 hybrids. The first activity peak (4--14 days) is associated with the induction of aryl hydrocarbon monooxygenase by 3,4-benzo(a)pyrene; the second peak (70--84 days) is related to noninductive mechanism. In DBA/2 mice, the second peak is absent while the slight increase in aryl hydrocarbon monooxygenase activity observed on days 14--28 indicates the aberrant inductive capacity of 3,4-benzo(a)pyrene under its prolonged administration. It is suggested that the weak sensitivity to the blastogenesis caused by 3,4-benzo(a)pyrene observed in C57BL/6 mice and in (C57BL/6 X DBA/2)F1 hybrids is due to the high level of liver aryl hydrocarbon monooxygenase activity at the time of tumor appearance.  相似文献   

7.
The enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes has been further studied. Ultrastructural observations suggest that newly formed endoplasmic membranes in rat liver parenchymal cells arise through continuous outgrowth and budding off from pre-existing cisternae and tubules of rough-surfaced endoplasmic reticulum. The membranes induced by phenobarbital treatment persist in the cytoplasm of the hepatocyte for up to 15 days after the last of a series of 5 phenobarbital injections; the phase of regression of the induced enzymes lasts for only 5 days. Disappearance of the membranes is gradual and does not seem to be associated with increased autophagic activity in the cell. A second series of injections of phenobarbital to previously induced rats—exhibiting normal drug-hydroxylating activity but an excess of liver endoplasmic membranes—is associated with a stimulation of the rate of Pi32 incorporation into microsomal phospholipid in vivo, similar to that found during the original induction process. Administration of Actinomycin D following a single phenobarbital injection delays the regression of the enhanced drug-hydroxylating activity. Finally, the effects of Actinomycin D and puromycin on the stimulated membrane formation are discussed.  相似文献   

8.
Nuclear enzymes were found to develop earlier than the corresponding microsomal activities. In fact styrene monooxygenase enzymatic activity at 18 days gestational age reached about half the values of adult animals, whereas fetal microsomal activity was only about 120 the adult level at the same age. In microsomes and nuclei the ontogenic development of epoxide hydrolase is slightly slower than styrene monooxygenase. This suggests that fetuses and newborn animals are exposed to higher risk of accumulation of styrene-7,8-oxide, a toxic and possibly teratogenic product of styrene monooxygenase.  相似文献   

9.
The content of cytochrome P450 and monooxygenase activity has been studied in the liver of Baikal fishes (Coregonus automnalis, Thymallus articus, Brachymystax lenok and Cottocomphorus greminsky). The administration of 3-methylcholanthrene increases considerably the level of metabolic activity of microsomal fraction and cytochrome P450 content in liver. The data of microsomal fractions of rats and fishes liver electrophoresis have shown that xenobiotic causes the synthesis of similar according to the molecular weight forms of cytochrome P450 in these animals. The induction of microsomal monooxygenase inhibits the lipid peroxidation of microsomal fraction.  相似文献   

10.
11.
In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield.

In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased.

These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.  相似文献   


12.
The influence of aging on the mechanisms of liver injury and regeneration was studied in a model of hepatotoxicity induced in 2-, 6-, 12-, 18- and 30-month-old rats by a sublethal dose of thioacetamide (500 mg/kg body weight), a soft nucleophilic and hepatotoxic compound metabolized by the hepatic microsomal FAD monooxygenase system. Samples-blood and hepatocytes-were obtained at 0, 12, 24, 48, 72 and 96 h following thioacetamide intoxication. Parameters of liver injury in serum (NADPH-isocitrate dehydrogenase (ICDH) activity) indicate that the severity of injury was significantly higher in the adult groups (6 and 12 months old) when compared either with the youngest (2 months old) or oldest (18 and 30 months old) groups. Parameters related to biotransformation, such as microsomal FAD monooxygenase, followed mainly the same pattern of age-dependent changes as those observed for injury. The profile of glutathione-S-transferase activity showed an initial induction parallel to liver injury and opposite to the levels of reduced glutathione and protein -SH groups. Enzyme activities and gene expression of the systems involved in the cell endogenous antioxidant defense, such as Mn- and Cu,Zn-superoxide dismutases (SOD), catalase and glutathione peroxidase (GPX) showed significant age-dependent changes that can be summarized as follows: an increase in all enzyme activities and gene expression and a decreased ability to restore the initial activities following 96 h of thioacetamide. We conclude, first, that the gene expression and activity of the enzymes involved in the intracellular antioxidant defense system increased with aging, which can be considered a consequence of the enhanced oxidative state of the cell (decreased in GSH level); and second, that the lower and delayed response in the aged groups significantly influenced the restoration towards normal of GSH and the antioxidant enzyme activities.  相似文献   

13.
Phenobarbital was given to male rats as a single injection and as repetitive injections for 7 days. The effects of treatment on the lysosomal hydrolases acid phosphatase, cathepsin D, and aryl sulfatase were analyzed at different intervals ranging from 1 to 15 days after seven injections, and from 1 to 48 h after a single injection. In both cases, microsomal protein and NADPH-cytochrome c reductase were measured to ensure proper induction. After a single injection, a slight decrease in hydrolytic activities was observed. Repetitive administration of phenobarbital gave rise to a marked decrease of lysosomal enzyme activities 1 day after cessation of treatment. This decrease was followed by a continuous increase in activity up to day 3 and 4. One or 2 weeks after treatment, enzyme activities declined to control values. The increase in activity of lysosomal hydrolytic enzymes was correlated with the onset of induced autophagy of endoplasmic reticulum membranes described as occurring in liver upon cessation of phenobarbital exposure. It is concluded that phenobarbital treatment per se decreases lysosomal enzyme activities, whereas the induced autophagy following cessation of exposure is associated with enhanced levels of lysosomal hydrolases in rat liver.  相似文献   

14.
The reconstitution of microsomal membrane monooxygenase system with variable contents of the hydroxylating chain enzymatic components was carried out. It was found that during self-assembly of microsomal membranes solubilized with 4% sodium cholate and gel filtration through Sephadex LH-20 in the presence of isolated microsomal enzymes, two forms of cytochrome P-450, i. e. phenobarbital- and 3-methylcholantrene-induced ones, and NADPH-cytochrome P-450 reductase, the exogenous enzymes are incorporated into the microsomal membrane matrices of control and methyl-cholantrene-treated animals. In the membranes reconstituted from the microsomes of the methylcholantrene-induced animals the catalytic activity of cytochrome P-448 in the metabolism of benz(a)pyrene at varying cytochrome P-448 and NADPH-cytochrome P-450 reductase contents were investigated.  相似文献   

15.
Our earlier studies in vitro have shown that eugenol inhibits liver microsomal monooxygenase activities and carbon tetrachloride (CCl4)-induced lipid peroxidation (Free Rad. Res. 20,253-266,1994). The objective of the present investigation was to study the in vivo protective effect of eugenol against CCI4 toxicity. Eugenol (5 or 25 mg/kg body wt) given orally for 3 consecutive days did not alter the levels of serum glutamic oxalacetic transaminase (SGOTJ, microsomal enzymes such as cytochrome P450 reductase, glucose-6-phosphatase (G-6-Pase) xenobiotic-metabolizing enzymes (aminopyrine-N-demethylase, N-nitrosodimethylamine-demethylase and ethoxyresorufin-O-deethylase) and liver histology. Doses of eugenol (5 or 25 mg/kg) administered intragastrically to each rat on three consecutive days i.e. 48 hr, 24 hr and 30 min before a single oral dose of CCU (2.5 ml/kg body wt) prevented the rise in SGOT level without appreciable improvement in morphological changes in liver. Eugenol pretreatment also did not influence the decrease in microsomal cytochrome P450 content, G-6-Pase and xenobiotic-metabolizing enzymes brought about by CCI4. Since eugenol is metabolized and cleared rapidly from the body, the dose schedule was modified in another experiment. Eugenol (0.2,1.0,5.0 or 25 mg/kg) when given thrice orally i.e. prior to (-1 hr) along with (0 hr) and after (+ 3 hr) the i.p. administration of CCI4 (0.4 ml/kg) prevented significantly the rise in SGOT activity as well as liver necrosis. The protective effect was more evident at 1 mg and 5 mg eugenol doses. However, the decrease in microsomal G-6-Pase activity by CCI4 treatment was not prevented by eugenol suggesting that the damage to endoplasmic reticulum is not protected. The protective effect of eugenol against CC14 induced hepatotoxicity is more evident when it is given concurrently or soon after rather than much before CCU treatment.  相似文献   

16.
The ability of phenobarbital to induce the expression and activity of microsomal drug monooxygenases in the liver presents one of the most important issues in the field of chemical interactions and in the toxicity of xenobiotics. The model of rat liver injury induced by a single dose of thioacetamide (500 mg/kg intraperitoneally) was used to study the effect of phenobarbital (80 mg/kg/day intraperitoneally) for 5 days prior to thioacetamide. Serum parameters of liver injury such as aspartate aminotransferase activity, gamma-glutamyl transferase activity and the total bilirubin levels, as well as the activities of hepatic FAD and cytochrome P450 microsomal monooxygenases, were assayed in 2- and 12-month-old rats. Samples of blood and liver were obtained from controls (injected at 0 h with 0.5 ml of 0.9% NaCl) and at 12, 24, 48, 72 and 96 h of thioacetamide intoxication either to non-treated or phenobarbital pretreated rats. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment was demonstrated at morphological level, and by significant increases in the activities of serum aspartate aminotransferase and gamma-glutamyl transferase, and in the levels of total bilirubin. The extent of potentiation of thioacetamide-induced liver injury by phenobarbital pretreatment was similar in both age groups. Microsomal FAD monooxygenase activity, the enzyme responsible for thioacetamide biotransformation, was significantly enhanced (twofold) by phenobarbital pretreatment, and also underwent a further increase following thioacetamide, preceding the peak of necrosis. Cytochrome P450 monooxygenases were induced by phenobarbital pretreatment more than sixfold, and sharply decreased when phenobarbital was withdrawn and thioacetamide administered, showing at 48 h intoxication values close to basal. Phenobarbital pretreatment potentiated thioacetamide necrogenicity, and this potentiation was parallel to the induction of the microsomal FAD monooxygenase system, both by phenobarbital and by thioacetamide itself. The extent of thioacetamide-induced liver injury was significantly higher in 12-month-old rats, but the effect of phenobarbital pretreatment was similar in both age groups.  相似文献   

17.
Experiments on the Wistar rats showed that neonatal daily injections of phenobarbital (35 mg/kg) during first 3 days of life resulted in the enzyme imprinting of liver microsomal monooxygenases. Rise in the activities of liver microsomal oxidation enzymes is constantly maintained during all the life leading to increase in average lifespan of rats. Analysis of the survival curves in Gompertz equation co-ordinates showed that enzyme imprinting by phenobarbital caused changes in mortality patterns at different stages of ontogenesis. The phenomenon of enzyme imprinting by phenobarbital and lifespan prolongation was registered only in females but not in males. An inverse correlation was found between the duration of phenobarbital sleeping time and lifespan of rats.  相似文献   

18.
The effect of acetylsalicylic acid, ibuprofen, indomethacin, ketoprofen, naproxen, phenylbutazone, and salicylic acid on the microsomal oxidative drug metabolism of rat liver was studied. Pretreatment of the rats with pharmacologic doses of acetylsalicylic acid, indomethacin, and ketoprofen decreased both the demethylase and hydroxylase activities of rat liver microsomes. These effects were paralleled by decreases in microsomal cytochrome P-450 content. The rate of the microsomal reactions was increased after pretreatment with ibuprofen and naproxen but only the former increased the concentration of cytochrome P-450. Phenylbutazone and salicylic acid had no in vivo effect on the hepatic monooxygenase. The addition of 1 mM of ibuprofen, indomethacin, ketoprofen, naproxen, and phenylbutazone to rat liver microsomes inhibit both the aminopyrine N-demethylase and p-nitro-anisole O-demethylase activities. The extent of the inhibition varied between 21 and 73% of the control incubation. Indomethacin, naproxen, and phenylbutazone also decreased the aniline hydroxylase activity to roughly 60% of the control value. Acetylsalicylic acid and salicylic acid had no in vitro effect on the microsomal monooxygenase. The nonsteroidal anti-inflammatory drugs produced a reverse type I binding spectrum with oxidized cytochrome P-450; indomethacin and phenylbutazone were the strongest ligands. There is no correlation between the effect of addition of nonsteroidal anti-inflammatory drugs to the hepatic microsomal homogenate and their in vivo effect on the monooxygenase activity.  相似文献   

19.
The ability of phenobarbital and beta-naphthoflavone to induce parathion desulfuration, aminopyrine N-demethylation, and NADPH-cytochrome-c reductase activity in the brain and liver of male and female rats was investigated. Activities of all three enzymes were found in similar levels in both the mitochondrial and microsomal fractions of brain. There were no sex differences in brain activities. Liver activities were from 10- to 30-fold higher than brain activities when computed on a tissue-wet-weight-equivalent basis. Although exposure to both inducers increased all three enzyme activities and cytochrome P-450 in liver, neither inducer increased the enzyme activities in mitochondrial or microsomal brain fractions of either sex. Thus, these brain monooxygenase activities appear to be refractory to induction by two classical types of cytochrome P-450 inducers. This lack of inducibility could serve to protect the animal against environmentally enhanced increases in the activation of xenobiotics to neurotoxic metabolites, such as parathion desulfuration to paraoxon.  相似文献   

20.
The induction of rat liver microsomal monooxygenase by pretreatment of rats with dieldrin affords a 10-fold protection against the acute toxic effects of the organophosphorus insecticide, chlorfenvinphos. Metabolism studies were carried out to confirm that the protection was due to an enhanced rate of detoxification (via oxidative deethylation). At low doses of chlorfenvinphos (2.5 mg · kg?1), dieldrin pretreatment caused minimal changes in the metabolic profiles. However, at a higher dose (13.2 mg · kg?1), giving clinical signs of intoxication in the control animals, the dieldrin pretreated rats produced 5 times more deethylchlorofenvinphos than did the control animals. The results support the conclusion that the effect of enzyme induction on the metabolism of substrates of that enzyme are dosedependent. Alterations in metabolism, therefore, are not an automatic consequence of enzyme induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号