首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the biological role of carbohydrate chains in the process of nerve cell differentiation, we carried out a characterization of the carbohydrate structure of glycoproteins by comparing conventional PC12 cells with variant cells (PC12D). In vitro metabolic labeling of cells with either [(3)H] glucosamine or [(3)H] threonine, together with tomato lectin staining, revealed that nerve growth factor (NGF) stimulation caused a decrease in the poly-N-acetyllactosamine synthesis of high-molecular-weight glycopeptides from PC12 cells. By comparison, the amount of glycopeptides with poly-N-acetyllactosamine from PC12D cells was already significantly low and it was not changed by NGF stimulation. By assaying the glycosyltransferases that participate in poly-N-acetyllactosamine synthesis, the decrease in the amount of the poly-N-acetyllactosamine in PC12D cells as well as NGF-stimulated PC12 cells could be accounted for by a reduction in the activity of poly-N-acetyllactosamine extension enzyme (GnT-i), because the amount of poly-N-acetyllactosamine in both cells precisely correlated with changes in GnT-i activity, whereas the activities of N-acetylglucosaminyltransferase V (GnT-V) and beta 1-4 galactosyltransferase remained unchanged. These results demonstrate that the decrease in poly-N-acetyllactosamine synthesis in PC12 cells occurred prior to neurite formation, whereas PC12D cells were insensitive to this effect. Next, we showed that GnT-i but not GnT-V catalyzed a rate-limiting reaction in the expression of poly-N-acetyllactosamine chains, especially in pheochromocytoma.  相似文献   

2.
N-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model. PC12 cells stably transfected with GnT-VB consistently showed an enhanced rate of nerve growth factor (NGF)-induced neurite outgrowth on collagen and laminin substrates. Levels of TrkA receptor phosphorylation and downstream ERK activation induced by NGF were not influenced by GnT-VB expression. No significant difference was observed in the rate of neurite outgrowth when cells were cultured on non-coated culture dishes, indicating that integrin-ECM interaction is required for the stimulatory effects. Neurite outgrowth induced by manganese-dependent activation of beta1 integrin on collagen and laminin substrates, however, showed a significant increase in neurite length for the PC12/GnT-VB cells, compared with control cells, suggesting that the enhancement is most likely mediated by alteration of beta1 integrin-ECM interaction by GnT-VB. These results demonstrate that GnT-VB expression can modulate the rate of neurite outgrowth by affecting beta1 integrin-ECM interaction.  相似文献   

3.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.  相似文献   

4.
The antisense cDNA of N-acetylglucosaminyltransferase V (GnT-V, EC 2. 4.1.155) was constructed as pcDNA3/GnT-V-AS plasmid and transfected into 7721 cells, a human hepatocarcinoma cell line. The transfection was confirmed with Northern blot. By using HPLC and HRP-lectin staining, it was found that the cells transfected with pcDNA3/GnT-V-AS (GnT-V-AS/7721) expressed less GnT-V activity and beta-1,6-GlcNAc branching in the cell glycoproteins compared with the cells mock-transfected with the vector pcDNA3 (pcDNA3/7721). The growth rate of GnT-V-AS/7721 was decreased in serum-containing medium, while the cell death was accelerated in serum-free medium. The GnT-V-AS/7721 cells were more susceptible to the apoptosis induced by ATRA than the mock-transfected cells. This was evidenced by the obvious appearance of a hypoploid sub-G(1) fraction in the DNA histogram using FCM analysis, the more condensed new moon-type nuclei under morphological observation, and the more intensive TUNEL reaction for assaying the fragmented DNA. At the same time as GnT-V down-regulation by GnT-V-AS, an increase of another N-aceylglusaminyltransferase, GnT-III (EC 2.4.1.144), was observed, and the biological significance of this finding was discussed.  相似文献   

5.
6.
The uncleaved, pro-form of nerve growth factor (proNGF) functions as a pro-apoptotic ligand for the p75 neurotrophin receptor (p75NTR). However, some reports have indicated that proneurotrophins bind and activate Trk receptors. In this study, we have examined proneurotrophin receptor binding and activation properties in an attempt to reconcile these findings. We show that proNGF readily binds p75NTR expressed in HEK293T cells but does not interact with TrkA expressed under similar circumstances. Importantly, proNGF activates TrkA tyrosine phosphorylation, induces Erk and Akt activation, and causes PC12 cell differentiation. We show that inhibiting endocytosis or furin activity reduced TrkA activation induced by proNGF but not that induced by mature NGF and that proNGF123, a mutant form of NGF lacking dibasic cleavage sites in the prodomain, does not induce TrkA phosphorylation in PC12 cells. Therefore, endocytosis and cleavage appear to be prerequisites for proNGF-induced TrkA activity. We also found that proBDNF induces activation of TrkB in cerebellar granule neurons and that proBDNF cleavage by furin and metalloproteases facilitates this effect. Taken together, these data indicate that under physiological conditions, proneurotrophins do not directly bind or activate Trk receptors. However, endocytosis and cleavage of proneurotrophins produce processed forms of neurotrophins that are capable of inducing Trk activation.  相似文献   

7.
8.
The purpose of this paper is to study the effect of N-acetylglucosaminyltransferase V (GnT-V) overexpression on the migration of 7721 cells and its mechanism. The abilities of migration of both 7721 cells transfected with GnT-V cDNA and 7721 cells transfected with pcDNA3 was detected, the expressions of integrin and E-cadherin which are important adhesion molecules on surface membrane and closely related to the abilities of invasion and metastasis. Cell migration abilities were measured by the agarose drop explant method. Flow cytometric analysis (FACS) was applied to determine the relative amounts of integrin alpha 5 and beta 1 subunits on the cell surface while RTPCR was carried out to determine the expression of their mRNA. The expression of E-cadherin was examined by the immunocytochemical ABC method. Western blot analysis was carried out to examine the expression of beta-catenin. GnT-V overexpression enhanced evidently the migration ability of 7721 cells and increased the amount of integrin alpha 5 subunit to 2.9 times of that of control while the amount of beta 1 subunits was not significantly changed. Besides, the expressions of E-cadherin and beta-catenin were enhanced at different levels in GnT-V/7721 cells compared with mocked. The results suggested that the overexpression of GnT-V related to the production of N-linked sugar chains could promote the expressions of integrin, E-cadherin and beta-catenin on 7721 cells so that the migration ability of tumor cells was enhanced.  相似文献   

9.
10.
《The Journal of cell biology》1996,133(6):1383-1390
Stathmin is a ubiquitous cytosolic protein which undergoes extensive phosphorylation in response to a variety of external signals. It is highly abundant in developing neurons. The use of antisense oligonucleotides which selectively block stathmin expression has allowed us to study directly its role in rat PC12 cells. We show that stathmin depletion prevents nerve growth factor (NGF)-stimulated differentiation of PC12 cells into sympathetic-like neurons although the expression of several NGF-inducible genes was not affected. Furthermore, we found that stathmin phosphorylation in PC12 cells which is induced by NGF depends on mitogen-activated protein kinase (MAPK) activity. We conclude that stathmin is an essential component of the NGF-induced MAPK signaling pathway and performs a key role during differentiation of developing neurons.  相似文献   

11.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

12.
13.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

14.
Pincher,a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes   总被引:16,自引:0,他引:16  
A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.  相似文献   

15.
16.
Changes in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected. Compared with control cells, knockdown of GnT-V caused significant inhibition of the morphological changes and cell detachment from matrix that is normally seen after stimulation with epidermal growth factor (EGF). Decreased expression of GnT-V caused a marked inhibition of EGF-induced dephosphorylation of focal adhesion kinase (FAK), consistent with the lack of cell morphology changes in the cells expressing GnT-V siRNA. The attenuation of EGF-mediated phosphorylation and activation of the tyrosine phosphatase SHP-2 was dramatically observed in GnT-V knockdown cells, and these effects could be rescued by reintroduction of GnT-V into these cells, indicating that reduced EGF-mediated activation of SHP-2 was GnT-V related. Concomitantly, knockdown of GnT-V caused reduced EGF-mediated ERK signaling and tumor cell invasiveness-related phenotypes, including effects on actin rearrangement and cell motility. No changes in EGF binding were observed, however, after knockdown of GnT-V. Our results demonstrate that decreased GnT-V activity due to siRNA expression in human breast carcinoma cells resulted in an inhibition of EGF-stimulated SHP-2 activation and, consequently, caused attenuation of the dephosphorylation of FAK induced by EGF. These effects suppressed EGF-mediated downstream signaling and invasiveness-related phenotypes and suggest GnT-V as a potential therapeutic target.  相似文献   

17.
The transforming gene of the avian sarcoma virus CT10 encodes a fusion protein (p47gag-crk or v-Crk) containing viral Gag sequences fused to cellular sequences consisting primarily of Src homology regions 2 and 3 (SH2 and SH3 sequences). Here we report a novel function of v-Crk in the mammalian pheochromocytoma cell line, PC12, whereby stable expression of v-Crk induces accelerated differentiation, as assessed by induction of neurites following nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) treatment compared with the effect in native PC12 cells. Surprisingly, however, these cells also develop extensive neurite processes after epidermal growth factor (EGF) stimulation, an event which is not observed in native PC12 cells. Following EGF or NGF stimulation of the v-CrkPC12 cells, the v-Crk protein itself became tyrosine phosphorylated within 1 min. Moreover, in A431 cells or TrkA-PC12 cells, which overexpress EGF receptors and TrkA, respectively, a GST-CrkSH2 fusion protein was indeed capable of binding these receptors in a phosphotyrosine-dependent manner, suggesting that v-Crk can directly couple to receptor tyrosine kinase pathways in PC12 cells. In transformed fibroblasts, v-Crk binds to specific tyrosine-phosphorylated proteins of p130 and paxillin. Both of these proteins are also complexed to v-Crk in PC12 cells, as evidenced by their coprecipitation with v-Crk in detergent lysates, suggesting that common effector pathways may occur in both cell types. However, whereas PC12 cellular differentiation can occur solely by overexpression of the v-Src or oncogenic Ras proteins, that induced by v-Crk requires a growth factor stimulatory signal, possibility in a two-step process.  相似文献   

18.
The rat pheochromocytoma PC12 cell line differentiates into a sympathetic neuronal phenotype upon treatment with either nerve growth factor (NGF) or basic fibroblast growth factor. The alkaloid-like compound K-252a has been demonstrated to be a specific inhibitor of NGF-induced biological responses in PC12 cells (Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. (1988) J. Neurosci. Res. 8, 715-721). NGF interacts with the protein product of the proto-oncogene trk and rapidly stimulates the tyrosine phosphorylation of both p140prototrk and a number of cellular substrates. Here we show that these phosphorylation events are directly inhibited in PC12 cells by K252a in a dose-dependent manner, indicating that the site of action of this inhibitor is at the NGF receptor level. K-252a inhibits p140prototrk activity in vitro, demonstrating that K-252a has a direct effect on the p140prototrk tyrosine kinase. Though many of the biochemical responses to NGF in PC12 cells are mimicked by basic fibroblast growth factor and epidermal growth factor, K-252a has no effect on the action of these growth factors in PC12 cells, demonstrating that the initial biological events initiated by NGF are distinctive during neuronal differentiation.  相似文献   

19.
We identify and characterize two classes of immediate-early genes: (i) genes, induced by depolarization in neurons, that play a role in depolarization-induced neuronal plasticity and (ii) genes, induced in neuronal precursors by neurotrophins, that play a causal role in neurotrophin-directed neuronal differentiation. We use rat PC12 pheochromocytoma cells to identify (i) genes preferentially induced by [depolarization or forskolin] versus [Nerve Growth Factor (NGF) or Epidermal Growth Factor (EGF)] and (ii) genes preferentially induced by NGF versus EGF. We describe (i) a collection of genes preferentially induced by depolarization/forskolin in PC12 cells and by kainic acid in vivo, and (ii) a collection of genes preferentially induced by NGF. The synaptotagmin IV gene encodes a synaptic vesicle protein whose level is modulated by depolarization. NGF preferentially induces the urokinase-plasminogen activator receptor in PC12 cells. Antisense oligonucleotide and anti-UPAR antibody experiments demonstrate that NGF-induced UPAR expression is required for NGF-driven PC12 cell differentiation.  相似文献   

20.
The beta-PDGF receptor induces neuronal differentiation of PC12 cells.   总被引:19,自引:0,他引:19       下载免费PDF全文
Expression of the mouse beta-PDGF receptor by gene transfer confers PDGF-dependent and reversible neuronal differentiation of PC12 pheochromocytoma cells similar to that observed in response to NGF and basic FGF. A common property of the PDGF, NGF, and basic FGF-induced differentiation response is the requirement for constant exposure of cells to the growth factor. To test the hypothesis that a persistent level of growth factor receptor signaling is required for the maintenance of the neuronal phenotype, we examined the regulation of the serine/threonine-specific MAP kinases after either short- (10 min) or long-term (24 h) stimulation with growth factors. Mono Q FPLC resolved two peaks of growth factor-stimulated MAP kinase activity that coeluted with tyrosine phosphorylated 41- and 43-kDa polypeptides. MAP kinase activity was markedly stimulated (approximately 30-fold) within 5 min of exposure to several growth factors (PDGF, NGF, basic FGF, EGF, and IGF-I), but was persistently maintained at 10-fold above basal activity after 24 h only by the growth factors that also induce PC12 cell differentiation (PDGF, NGF, and basic FGF). Thus the beta-PDGF receptor is in a subset of tyrosine kinase-encoded growth factor receptors that are capable of maintaining continuous signals required for differentiation of PC12 cells. These signals include the constitutive activation of cytoplasmic serine/threonine protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号