首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

2.
In vitro culture of VFNT Cherry tomato sepals (calyx) at 16–21 °C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.  相似文献   

3.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

4.
5.
Polygalacturonase (PG, EC 3.2.1.15), an enzyme commonly found in ripening fruit, has also been shown to be associated with abscission. A zone-specific rise in PG activity accompanies the abscission of both leaves and flowers of tomato (Lycopersicon esculentum Mill.) plants. Studies of transgenic plants expressing an antisense RNA for fruit PG indicate that although the enzyme activity in transgenic fruit is < 1 % of that in untransformed fruit, the PG activity in the leaf abscission zone increases during separation to a similar value to that in untransformed plants. The timing and rate of leaf abscission in transgenic plants are unaffected by the introduction of the antisense gene. A polyclonal antibody raised against tomato fruit PG does not recognise the leaf abscission protein. Furthermore a complementary DNA (cDNA) clone (pTOM6), which has been demonstrated to code for fruit PG, does not hybridise to mRNA isolated from the abscission-zone region of tomato leaves. These results indicate that the PG protein in abscission zones of tomato is different from that in the fruit, and that the gene coding for this protein may also be different.Abbreviation PG polygalacturonase The authors of this paper are grateful to David Jackson of the John Innes Institute, Norwich, UK for his assistance with the in-situ hybridisation work. This research was supported by an Agricultural and Food Research Council Post-Doctoral award to J.E.T., and by a grant to D.G. from the Science and Engineering Research Council Biotechnology Directorate in association with ICI seeds. The work was carried out under Ministry of Agriculture, Food and Fisheries licences.  相似文献   

6.
7.
This paper describes the analysis of tomato plants transformed with a chimeric gene consisting of the promoter region of a fruit specifically expressed tomato gene linked to the ipt gene coding sequences from the Ti plasmid of Agrobacterium tumefaciens. The pattern of expression of this chimeric gene was found to be consistent with the expression of the endogenous fruit-specific gene and consequently, plants expressing the chimeric gene were phenotypically normal until fruit maturation and ripening. A dramatically altered fruit phenotype, islands of green pericarp tissue remaining on otherwise deep red ripe fruit, was then evident in many of the transformed plants. Cytokinin levels in transformed plant fruit tissues were 10 to 100-fold higher than in control fruit. In the leaves of a fruit-bearing transformant, despite a lack of detectable ipt mRNA accumulation, approximately fourfold higher than control leaf levels of cytokinin were detected. It is suggested that cytokinin produced in fruit is being transported to the leaves since accumulation in leaves of PR-1 and chitinase mRNAs, which encode defense-related proteins known to be induced by cytokinin, occurred only when the transformant was reproductively active. Effects of elevated cytokinin levels on tomato fruit gene expression and cellular differentiation processes are also described.  相似文献   

8.
There are at least five lipoxygenases (TomloxA, TomloxB, TomloxC, TomloxD, and TomloxE) present in tomato (Lycopersicon esculentum Mill.) fruit, but their role in generation of fruit flavor volatiles has been unclear. To assess the physiological role of TomloxC in the generation of volatile C6 aldehyde and alcohol flavor compounds, we produced transgenic tomato plants with greatly reduced TomloxC using sense and antisense constructs under control of the cauliflower mosaic virus 35S promoter. The expression level of the TomloxC mRNA in some transgenic plants was selectively reduced by gene silencing or antisense inhibition to between 1% and 5% of the wild-type controls, but the expression levels of mRNAs for the four other isoforms were unaffected. The specific depletion of TomloxC in transgenic tomatoes led to a marked reduction in the levels of known flavor volatiles, including hexanal, hexenal, and hexenol, to as little as 1.5% of those of wild-type controls following maceration of ripening fruit. Addition of linoleic or linolenic acid to fruit homogenates significantly increased the levels of flavor volatiles, but the increase with the TomloxC-depleted transgenic fruit extracts was much lower than with the wild-type control. Confocal imaging of tobacco (Nicotiana tabacum) leaf cells expressing a TomloxC-GFP fusion confirmed a chloroplast localization of the protein. Together, these results suggest that TomloxC is a chloroplast-targeted lipoxygenase isoform that can use both linoleic and linolenic acids as substrates to generate volatile C6 flavor compounds. The roles of the other lipoxygenase isoforms are discussed.  相似文献   

9.
10.
Transgenic tomato plants expressing antisense RNA to a ripening-related cDNA clone (pTOM5) had yellow ripening fruit and pale coloured flowers. Carotenoid levels in fruit of these plants were reduced by up to 97%. In order to determine the step of carotenoid biosynthesis which was blocked, a cell-free system active in the synthesis of carotenoid intermediates was prepared. Incubations with radiolabelled carotenoid precursors led to the identification of the block between GGDP and phytoene. Analysis of carotenoids in different tissues of transgenic and control plants indicated that although ripe fruit and flower carotenoid levels were reduced in the modified plants, leaf carotenoid levels were not decreased. This implies that the pTOM5 gene product is not involved in carotenoid synthesis in the leaf.  相似文献   

11.
The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the ethylene receptor encoded by the NR gene, such that it can no longer bind the hormone. NR has homology to the Arabidopsis ethylene receptors. Studies on ethylene perception in Arabidopsis have demonstrated that receptors operate by a "receptor inhibition" mode of action, in which they actively repress ethylene responses in the absence of the hormone, and are inactive when bound to ethylene. In ripening tomato fruit, expression of NR is highly regulated, increasing in expression at the onset of ripening, coincident with increased ethylene production. This expression suggests a requirement for the NR gene product during the ripening process, and implies that ethylene signaling via the tomato NR receptor might not operate by receptor inhibition. We used antisense inhibition to investigate the role of NR in ripening tomato fruit and determine its mode of action. We demonstrate restoration of normal ripening in Nr fruit by inhibition of the mutant Nr gene, indicating that this receptor is not required for normal ripening, and confirming receptor inhibition as the mode of action of the NR protein.  相似文献   

12.
13.
Plant isoprenoids represent a heterogeneous group of compounds which play essential roles not only in growth and development, but also in the interaction of plants with their environment. Higher plants contain two pathways for the biosynthesis of isoprenoids: the mevalonate pathway, located in the cytosol/endoplasmic reticulum, and the recently discovered mevalonate-independent pathway (Rohmer pathway), located in the plastids. In order to evaluate the function of the Rohmer pathway in the regulation of the synthesis of plastidial isoprenoids, we have isolated a tomato cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first enzyme of the pathway. We demonstrate in vivo activity and plastid targeting of plant DXS. Expression analysis of the tomato DXS gene indicates developmental and organ-specific regulation of mRNA accumulation and a strong correlation with carotenoid synthesis during fruit development. 1-Deoxy-D-xylulose feeding experiments, together with expression analysis of DXS and PSY1 (encoding the fruit-specific isoform of phytoene synthase) in wild-type and yellow flesh mutant fruits, indicate that DXS catalyses the first potentially regulatory step in carotenoid biosynthesis during early fruit ripening. Our results change the current view that PSY1 is the only regulatory enzyme in tomato fruit carotenogenesis, and point towards a coordinated role of both DXS and PSY1 in the control of fruit carotenoid synthesis.  相似文献   

14.
Pectin esterases (PE, EC 3.1.1.11) catalyse the demethylation of pectin. As a result of its activity, structural interactions among cell wall components during cell wall turnover and loosening are affected. In plants, PEs are typically encoded by a gene family. This family has been studied in strawberry (Fragaria x ananassa Duch.) in order to investigate the role of distinct PE genes during fruit ripening and senescence. By a combination of a PCR-based library screening and RT-PCR four different strawberry PE cDNAs, termed FaPE1 to FaPE4, have been isolated. Differential expression of each FaPE gene in various organs and during fruit development was revealed by northern blot. FaPE1 is specifically expressed in fruit, showing an increasing expression during the ripening process up to a maximum in the turning stage. Concerning hormone regulation, auxin treatment increased FaPE1 mRNA levels in green fruit, whereas exogenous ethylene decreased FaPE1 mRNA levels in ripe and senescing fruits. It is proposed that this repression of FaPE1 expression could be involved in textural changes occurring during fruit senescence.  相似文献   

15.
16.
Jiang XL  He ZM  Peng ZQ  Qi Y  Chen Q  Yu SY 《Transgenic research》2007,16(2):169-175
Cholera toxin B (CTB) subunit is a well-characterized antigen against cholera. Transgenic plants can offer an inexpensive and safe source of edible CTB vaccine and may be one of the best candidates for the production of plant vaccines. The present study aimed to develop transgenic tomato expressing CTB protein, especially in the ripening tomato fruit under the control of the tomato fruit-specific E8 promoter by using Agrobacterium-mediated transformation. Transgenic plants were selected using PCR and Southern blot analysis. Exogenous protein extracted from leaf, stem, and fruit tissues of transgenic plants was detected by ELISA and Western blot analysis, showing specific expression in the ripening fruit, with the highest amount of CTB protein being 0.081% of total soluble protein. Gavage of mice with ripe transgenic tomato fruits induced both serum and mucosal CTB specific antibodies. These results demonstrate the immunogenicity of the CTB protein in transgenic tomato and provide a considerable basis for exploring the utilization of CTB in the development of tomato-based edible vaccine against cholera. The rCTB antigen resulted in much lower antibody titers than an equal amount of exgenous CTB in trangenic fruits, suggesting the protective effect of the fibrous tissue of the fruit to the exogenous CTB protein against the degradation of protease in the digestive tracts of mice. Xiao-Ling Jiang and Zhu-Mei He contributed equally to this work.  相似文献   

17.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

18.
We have identified two major groups of pectin methylesterase (PME, EC 3.1.1.11) isoforms in various tissues of tomatoes (Lycopersicon esculentum). These two groups exhibited differential immuno-cross-reactivity with polyclonal antibodies raised against tomato fruit PME or flax callus PME and differences in their accumulation patterns in tissues of wild-type and transgenic tomato plants expressing a PME antisense gene. The group I isoforms with isoelectric points (pls) of 8.2, 8.4, and 8.5 are specific to fruit tissue, where they are the major forms of PME activity. The group II PME isoforms, with pl values of 9 and above, are observed in both vegetative and fruit tissues. The group I isoforms cross-react with polyclonal antibodies raised to a PME isoform purified from fruit, whereas the group II isoforms cross-react with antibodies to a PME purified from flax callus. Expression of a fruit-specific PME anti-sense gene impairs accumulation of the group I PME isoforms, with no apparent effect on the accumulation of the group II PME isoforms. The absence of any noticeable effects on growth and development of transgenic plants suggests that the group I PME isoforms are not involved in plant growth and development and may play a role under special circumstances such as cell separation during fruit ripening.  相似文献   

19.
Virus-induced gene silencing in tomato fruit   总被引:16,自引:0,他引:16  
Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants. Here we report that either by syringe-infiltrating the tobacco rattle virus (TRV)-vector into the surface, stem or carpopodium of a tomato fruit attached to the plant or by vacuum-infiltrating into a tomato fruit detached from the plant, TRV can efficiently spread and replicate in the tomato fruit. Although VIGS can be performed in tomato fruit by all of the means mentioned above, the most effective method is to inject the TRV-vector into the carpopodium of young fruit attached to the plant about 10 days after pollination. Several reporter genes related to ethylene responses and fruit ripening, including LeCTR1 and LeEILs genes, were also successfully silenced by this method during fruit development. In addition, we found that the silencing of the LeEIN2 gene results in the suppression of tomato fruit ripening. The results of our study indicate that the application of VIGS techniques by the described methods can be successfully applied to tomato fruit and is a valuable tool for studying functions of the relevant genes during fruit developing.  相似文献   

20.
Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studying gene function in plants. We showed that silencing of a phytoene desaturase (PDS) gene is maintained throughout TRV-PDS-inoculated tomato plants as well as in their flowers and fruit and is enhanced by low temperature (15 degrees C) and low humidity (30%). RT-PCR analysis of the PDS gene revealed a dramatic reduction in the level of PDS mRNA in leaves, flowers and fruits. Silencing of PDS results in the accumulation of phytoene, the desaturase substrate. In addition, the content of chlorophyll a, chlorophyll b and total chlorophyll in the leaves of PDS-silenced plants was reduced by more than 90%. We also silenced the LeEIN2 gene by infecting seedlings, and this suppressed fruit ripenning. We conclude that this VIGS approach should facilitate large-scale functional analysis of genes involved in the development and ripening of tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号