首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

2.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

3.
A surge of LH during the follicular phase triggers multiple pathways, including progesterone and prostaglandin synthesis before culminating in ovulation. Progesterone has been shown to be involved in the ovulatory process in many species. In prepuberal gilts treated with PMSG/hCG the follicular progesterone level has been shown to increase sharply before ovulation. This study was conducted to investigate whether premature elevation of progesterone can accelerate the ovulatory process in Large White PMSG/hCG-treated prepuberal gilts. Fifty-four Large White gilts were treated with 1000 IU, i.m. PMSG to stimulate follicular growth, followed 72 h later by 500 IU, i.m. hCG to induce ovulation. Gilts in the treatment group (n = 27) were given progesterone intermuscularly at 24 and 36 h after hCG. Ovaries were exteriorized to observe ovulation points during laparotomy under general anesthesia at 38 to 50 h after hCG. Ovulation in both groups commenced by 40.05 h after hCG and was completed by 47.71 h in the control group and by 42.87 h after hCG in the treated group. Progesterone shortened (P < 0.01) ovulation time by 4.84 h and the time required (P < 0.01) for the median proportion of follicles to ovulate (40.7 vs 43.5 h after hCG). Progesterone also increased (P < 0.01) the plasma progesterone concentration without altering follicular progesterone concentration.  相似文献   

4.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

5.
Serum and ovarian progesterone levels and in vitro production of progesterone by preovulatory follicles were measured on proestrus in pregnant mare's serum gonadotropin (PMSG) primed immature rats in which the luteinizing hormone (LH) surge and ovulation were blocked by administration of the antiandrogen hydroxyflutamide. Serum progesterone levels observed at 12:00 on proestrus were significantly elevated, twofold above those observed in vehicle-treated controls, by in vivo administration of 5 mg hydroxyflutamide 4 h earlier. In control rats, proestrous progesterone did not increase until 16:00, in parallel with rising LH levels of the LH surge. No LH surge occurred in the hydroxyflutamide-treated rats, ovulation was blocked, and serum progesterone declined throughout the afternoon of proestrus, from the elevated levels present at 12:00. Administration of human chorionic gonadotropin (hCG) at 11:00 advanced the elevation of serum progesterone by 2 h in vehicle-treated controls and prevented the decline in progesterone levels in hydroxyflutamide-treated rats. The patterns of change in ovarian tissue concentrations with time and treatment were essentially similar to those observed for serum progesterone. In in vitro experiments, progesterone secretion during 24 h culture of preovulatory follicles obtained on PMSG-induced proestrus was significantly increased, sixfold, by addition to the culture media of 370 microM but not of 37 microM hydroxyflutamide. Testosterone (50 nM) and hCG (20 mIU/mL) caused 26- and 14-fold increases, respectively, in progesterone secretion by cultured follicles. Hydroxyflutamide significantly reduced the stimulatory effect of testosterone but not of hCG on progesterone secretion in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gonadotropin releasing hormone (GnRH) has been shown to mimic the actions of LH/hCG on oocyte maturation and ovulation. Recent studies demonstrated that induction of ovulation by LH/hCG is mediated, at least in part, by transactivation of epidermal growth factor receptors (EGFR) by autocrine/paracrine EGF-like factors activated by metalloproteases. Here we have examined whether the action of GnRH on the preovulatory follicles is exerted through similar mechanisms involving activation of EGFR. The EGFR kinase inhibitor, AG1478, inhibited GnRH-induced oocyte maturation in explanted follicles in vitro. Its inactive analog, AG43, did not affect GnRH-stimulated resumption of meiosis. GnRH, like LH, stimulated transient follicular expression of EGF-like agents, as well as rat cycloxygenase-2 (rCOX-2), rat hyaluronan synthase-2 (rHAS-2), and rat tumor necrosis factor-alpha-stimulated gene 6 (rTSG-6) mRNAs, known ovulatory enzymes. Likewise, GnRH stimulated follicular progesterone synthesis. Conversely AG1478 inhibited all these actions of GnRH. Furthermore, Galardin, a broad-spectrum metalloprotease inhibitor, blocked GnRH-induced oocyte maturation and follicular progesterone synthesis. In conclusion, we have demonstrated that follicular EGF-like factors mediate also the GnRH-stimulation of ovulatory changes, like these of LH/hCG.  相似文献   

7.
A few recent investigations have indicated that it is possible for mammalian ovulation to progress to completion in the absence of a preovulatory rise in ovarian prostanoid production and that the antiovulatory mode of action of antiinflammatory agents (e.g., indomethacin) could be independent of their ability to inhibit the cyclooxygenase pathway of arachidonate metabolism. Mature ewes were treated during the preovulatory period with a systemic dosage of indomethacin that either consistently did (500 mg) or did not (100 mg) prevent follicular rupture. With both dosages, the rise in follicular production of prostaglandin F2 alpha following the surge in secretion of LH was negated. Indomethacin did not affect periovulatory patterns of change in follicular tissue concentrations of estradiol-17 beta, testosterone, or progesterone. The 500-mg dose of indomethacin inhibited collagen breakdown within the follicular wall as deduced from measurement of tissue levels of hydroxyproline. In vitro secretion of a follicular leukotactic agent and accumulation of extravascular white blood cells within the theca interna of periovulatory follicles were also suppressed by the ovulation-inhibiting dose of indomethacin. It appears that the blockage of ovulation induced by indomethacin in the sheep is largely unrelated to its capacity to suppress follicular prostaglandin biosynthesis; rather, it is more directly associated with effects on follicular collagenolysis and leukocyte chemoattraction.  相似文献   

8.
Cells of the apical wall of the dominant follicle and contiguous ovarian surface epithelium become apoptotic with the approach of ovulation in the sheep. It was hypothesized that indomethacin, an established inhibitor of prostaglandin biosynthesis and ovulation, would protect apical ovarian cells from programmed death. The anovulatory potencies of two systemic doses of indomethacin (200 and 800 mg) were tested in gonadotropin-stimulated ewes. A complete blockade of ovulation occurred at the higher dose of indomethacin. Ovulation was not inhibited by 200 mg indomethacin. Both doses of drug suppressed follicular prostaglandin production below pregonadotropin levels. Immunofluorescence detection of digoxigenin end-labeled (fragmented) DNA was used as a marker of apoptosis among ovarian surface epithelial and granulosa cells recovered from the apical hemisphere of preovulatory ovine follicles. Cellular DNA fragmentation was averted in animals given 800 mg indomethacin, whereas apoptosis ensued after 200 mg. A sustained increase in cytosolic calcium is generally a prerequisite to apoptotic DNA fragmentation and cell death. Indeed, intracellular calcium, detected by fluorescence of fura-2, was elevated in ovarian cells of animals destined to ovulate (controls, 200 mg indomethacin) in comparison to (safeguarded) cells of anovulatory ewes (800 mg indomethacin). These observations provide circumstantial evidence that apical ovarian cell degeneration by calcium-mediated apoptosis is a determinant of follicular instability and rupture, but that these events are unrelated to the gonadotropin-induced rise in prostanoid production characteristic of preovulatory follicles.  相似文献   

9.
Org 31710 and Org 33628 are two highly selective progesterone receptor modulators (PRMs) with respect to their anti-progestational and anti-glucocorticoid activity. The compounds have been studied both in vitro and in vivo. Org 33628 has approximately four times stronger anti-progestational activity in vitro than does Org 31710, and in rats it is about 15 times more potent in the pregnancy interruption test. Two main indications for the use of PRMs are breast cancer and fertility regulation. The effects of both Org 31710 and Org 33628 were tested in relevant models for these indications. The effects of the two compounds on breast tumor development were assessed and in rats using the DMBA model. Their potency in menses induction was tested in monkeys on a 4-day regimen in the luteal phase, and after a single dose at day 21 of the normal cycle, and under a continuous progestin treatment using desogestrel. The compounds were also tested alone in a continuous low-dose regimen. The effects on follicular development and ovulation were determined by measuring estradiol and progesterone levels. Cycle control was monitored by daily vaginal swabs. In the DMBA model, Org 31710 at oral doses of 0.8, 2.0, and 5.0 mg/kg showed a clear dose-related reduction in tumor load. With the two highest doses, an even lower tumor load was seen after a 3-week treatment period compared to the tumor load at the start of treatment. Org 33628 showed a similar efficacy as Org 31710 at a dose of 2.0 mg/kg. RU 486 after oral treatment was two times less potent in this model than Org 31710 and Org 33628. The efficacy of menses induction using the 4-day regimen is dependent on the time of administration relative to the progesterone peak in the luteal phase. The highest efficacy is achieved in the descending part of the peak, at which a 100% success rate is found with a dose of 1 mg/kg of either Org 31710 or Org 33628. In Cynomolgus monkeys, at a single dose of 15 mg/kg of Org 31710 or Org 33628 in the luteal phase, menses induction was achieved only in 60% of the treatment cycles. Surprisingly menses induction can be achieved with a single dose that is about a ten-times lower when the monkeys are treated continuously with desogestrel. Cycle control is better at low than at high doses of antiprogestin in combination with daily dosing of 4 microg/kg desogestrel. Despite the difference in receptor affinity, no difference between Org 31710 and Org 33628 was found in menses induction. In the continuous low-dose (1 mg/kg) regimen with the PRMs, follicular development occurs normally while ovulation is inhibited. Ovulation is resumed shortly after stopping treatment, and a normal menses occurs after the first progesterone peak. Both compounds may be interesting options for the prevention and treatment of breast cancer and for fertility control.  相似文献   

10.
The introduction of rams to a group of previously isolated anoestrous ewes has been shown to stimulate ovarian follicular development and ovulation. The present experiment was carried out to determine the ability of follicles arising from this ram stimulus to produce steroids and bind hCG. Seasonally anoestrous Southdown ewes were exposed to rams for 24 h, 40 h, 3 days, 10 days or 20 days before ovariectomy. Steroid production and the concentration of hCG binding sites in follicles dissected from the ovaries were measured in vitro. The presence of a ram caused ovulation and enhanced oestradiol production by follicles, but had little effect on total androgen production or the number of hCG binding sites present in the follicles when compared to follicles from anoestrous ewes. The oestradiol concentrations in large follicles were not as high as in preovulatory follicles from cyclic ewes reported in other studies. Follicles continued to develop through the ram contact period and when incubated after 40 h and 10 days of ram contact produced high levels of progesterone, indicating partial luteinization, although the corpora lutea (CL) resulting from the induced ovulations regressed prematurely. We suggest that the lack of hCG binding sites in ram-induced follicles may be the cause of poor luteinization and suboptimal development of luteal tissue after induced ovulation in ewes during seasonal anoestrus.  相似文献   

11.
Adult cyclic hamsters were used to study the effects of interleukin-1 alpha (IL-1 alpha) on in vitro steroidogenesis in preovulatory follicles. IL-1 alpha increased progesterone secretion by preovulatory follicles during a 24-h incubation in RPMI-1640 medium containing hCG (100 mIU/ml) (progesterone levels: 17.5 +/- 2.2 vs. 10.6 +/- 1.9 ng/follicle/ml, p less than 0.05). IL-1 alpha alone had no effect on follicular steroidogenesis. The source of increased progesterone secretion was the thecae (9.8 +/- 1.0 vs. 5.8 +/- 0.4 ng/2 thecae/ml, p less than 0.01) and not the granulosa cells (6.6 +/- 0.2 vs. 6.8 +/- 0.5 ng/20,000 viable granulosa cells/ml). IL-1 alpha also stimulated production of testosterone in thecae of preovulatory follicles. The follicular progesterone increase was dependent on the time of incubation and dose of IL-1 alpha. IL-1 alpha at 5-50 U/ml maximally stimulated progesterone production in the preovulatory follicles, and no significant effect of IL-1 alpha was observed until the 12th hour of incubation. The effects of IL-1 alpha on in vitro steroidogenesis in preantral follicles, experimentally induced atretic preovulatory follicles, and newly formed corpora lutea were examined. IL-1 alpha in the presence of hCG also significantly increased progesterone secretion by atretic preovulatory follicles. In the incubation of preantral follicles or newly formed corpora lutea, however, IL-1 alpha did not alter steroidogenesis. These results indicate that IL-1 alpha stimulates progesterone secretion by preovulatory follicles and that the target tissue for this effect is the thecal layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Follicular fluid from small- to medium-sized follicles has been shown to have an inhibiting effect on luteinization of granulosa cells in vitro. This study was conducted to investigate the effect of in vivo removal of follicular fluid on luteinization, peripheral gonadotropin concentrations, and ovulation of secondary follicles in the mare. Follicular fluid was aspirated from the preovulatory follicles of mares when the diameter of the follicle was 30-34 mm (Group A), 35-39 mm (Group B), or 40-44 mm (Group C). Mares in Group D served as controls and the preovulatory follicle was not aspirated. Mares in Group A had a significantly earlier rise in peripheral progesterone concentrations than did controls. There was no difference in duration of progesterone secretion or peak progesterone production between groups. LH and FSH values were significantly higher for mares in Groups A and B than for control mares. Mares in Group A tended to have a higher incidence of secondary ovulations than did mares in other groups. These data support the in vitro findings that follicular fluid from small- to medium-sized follicles may contain a luteinization inhibitor, and indicate that presence of follicular fluid during the final days of follicular maturation is not essential for development of a normal CL.  相似文献   

13.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

14.
The intracellular progesterone receptor (PR) in the mammalian ovary is a part of the physiological pathway that facilitates ovulation. Two PR isoforms (A and B) exist, with different molecular and biological functions. Previous studies have revealed that the cellular ratio of the PR isoforms is important for progesterone-responsive tissues and is under developmental control in different species. However, the relative expression of PR isoforms in the ovary is unknown. In this study we have demonstrated first that the expression of both PR isoforms in mouse granulosa cells was rapidly up-regulated by hCG treatment and dramatically down-regulated when the granulosa cells were undergoing luteinization. The relative level of protein expression of the A and B forms was 2:1 and the highest total PR protein expression was found after hCG stimulation. Second, we demonstrated that the expression of PR protein was specific to granulosa cells of periovulatory follicles and was absent in undifferentiated granulosa cells of growing follicles. It was not detected in other cell types (i.e., corpora lutea or any stage of follicles with features of apoptosis). Third, we demonstrated that treatment with the PR antagonist RU 486 in vivo resulted in down-regulation of both isoforms in parallel with increased activation of caspase-3, a decreased level of proliferating cell nuclear antigen, and a reduced rate of ovulation. Fourth, we demonstrated, in vitro, that the PR antagonists RU 486 and Org 31710 increased internucleosomal DNA fragmentation parallel with a decrease in DNA synthesis in granulosa cells, which express PR. These results indicate that PR and its isoforms participate in regulation of ovulation, along with suppression of granulosa cell apoptosis and promotion of cell survival in the mouse ovary.  相似文献   

15.
A 'double isotope' technique has been used to describe the temporal relationship between plasma and follicular concentrations of LH after injection of 51Cr and 125I-rat LH into immature rats. Radiolabelled LH was detectable in all follicles 1 min after injection. Concentrations in small antral and large preovulatory follicles were not significantly different at any time and reached a maximum of 34.2 +/- 3.0% of plasma concentrations at 40 min. Concentrations of LH in preovulatory follicles exposed to an ovulatory dose of hCG 4 h previously were significantly greater (P less than 0.05) than those in small antral and preovulatory follicles at all times, and reached a maximum of 46.2 +/- 1.7% of plasma concentrations after 1 h. Polyacrylamide gel electrophoresis and immunoprecipitation with an antibody specific for rat LH indicated that radioactivity in plasma and follicular fluid represented radio-iodinated LH. Steroidogenic activities, light microscopy and measurements of follicular volume of each class of follicle confirmed that small antral, preovulatory follicles and preovulatory follicles exposed to an ovulatory dose of hCG in vivo could be isolated specifically. Based on these findings it is possible to calculate that, during an endogenous pulse of LH secretion, follicular concentrations of LH never exceed 20% of peak plasma concentrations. Pronounced increases in functional activities during antral growth were not correlated with increased follicular permeability. Only after acute exposure to an ovulatory dose of hCG in vivo was permeability significantly increased. We conclude that entry of LH into antral follicles is restricted and that exposure to an ovulatory dose of hCG results in greater amounts of LH entering preovulatory follicles.  相似文献   

16.
Unabated stimulation by low doses of LH-like activity produces ovarian follicular cysts in both progesterone-synchronized immature rats and pregnant rats. Serum FSH is maintained in both of these models at values similar to those observed on diestrus. To determine whether unabated stimulation by basal serum FSH affects the ability of LH-like activity to induce cystic ovaries, immature hypophysectomized (HYPOXD) rats were given either no hormone (control); 2 micrograms ovine FSH (oFSH) once daily for 14 days beginning on Day 27; 0.5 IU hCG twice daily for 13 days beginning on Day 28 of age; or both oFSH and hCG (FSH + hCG) beginning on Day 27 and Day 28, respectively. By the end of the in vivo treatments (Day 40 of age), the largest follicles in the ovaries of control and hCG-treated HYPOXD rats were at the preantral stage of development, whereas the largest follicles present in ovaries from FSH-treated animals were atretic and at the small antral stage of development. In contrast, ovaries from rats treated with FSH + hCG displayed large follicular cysts by Day 37 of age. Of the serum steroids analyzed, only estradiol and androstenedione concentrations for animals treated with FSH + hCG were consistently elevated above values observed for control HYPOXD rats. Serum testosterone and dihydrotestosterone values were similar for hCG-treated and control HYPOXD rats throughout the in vivo treatments. In contrast, these steroids were elevated between Days 3 and 5 of FSH treatment (+/- hCG treatment). Serum progesterone and estrone values for all in vivo gonadotropin treatment groups were similar to those of controls. Serum insulin concentrations were not affected by any in vivo treatment. Incubates of follicles/cysts from FSH + hCG-treated HYPOXD rats contained more progesterone, androstenedione, and estradiol than incubates of follicles from any other in vivo treatment group. Follicles from all in vivo treatment groups responded to 8-bromo cAMP (cAMP) with increased in vitro progesterone accumulation. However, only follicles from FSH-treated and FSH + hCG-treated rats responded to cAMP with increased androstenedione and estradiol accumulation in vitro. Inclusion of 400 ng of either androstenedione or testosterone in the incubation medium enhanced progesterone accumulation in follicular incubates from control, hCG-treated, and FSH-treated HYPOXD rats, but did not enhance progesterone accumulation in follicular incubates from FSH + hCG-treated animals. Both androstenedione and estradiol production increased markedly under these conditions for follicles from all in vivo treatment groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
Temporal changes in follicular oestradiol production induced in vitro and in vivo by LH were studied. In-vitro changes were measured by incubating preovulatory rat follicles for 12 h, changing the medium every 2 h. Follicles isolated at various intervals after an injection of 10 i.u. hCG were incubated for 2 h to measure changes in oestradiol production in vivo. In both studies there was an increase in oestradiol production lasting 4 h followed by a sharp decline. Progesterone production was also increased by LH in vitro or hCG in vivo, but remained high. A second exposure to LH did not raise oestradiol synthesis, but increased progesterone synthesis in vitro only. The decline in oestradiol production is most probably due to a decrease in C17-20 lyase activity, because addition of testosterone, but not of 17 alpha-hydroxyprogesterone, increased oestradiol production. Incubation of preovulatory follicles in the absence of LH or incubation of follicles derived from animals in which the spontaneous LH surge was blocked by an injection of pentobarbitone sodium also resulted in a decrease of oestradiol and an increase in progesterone production. This oestrogen-progesterone shift was also caused by a decrease in C17-20 lyase activity. The results demonstrate that the changes in steroid production in vivo and in vitro are similar and occur in the presence and absence of LH. It is concluded that the decrease in oestradiol production is dependent on the decrease in the activity of enzymes converting progesterone to aromatizable androgens.  相似文献   

19.
Steroids and follicular rupture at ovulation   总被引:3,自引:0,他引:3  
The preovulatory surge of gonadotropins stimulates follicular steroidogenesis and changes from estrogen as the major product to progesterone. We shall overview the studies dealing with the role of ovarian steroidogenesis in follicular rupture at ovulation. Several inhibitors of steroidogenesis blocked follicular rupture in vivo. Likewise, RU 38486 partially blocked ovulation triggered by hCG. Collectively, these data support the knowledge that follicular steroidogenesis is required for ovulation. Recent studies confirmed the essential role of plasminogen activator (PA) in follicular rupture. The LH stimulation of PA activity was partially blocked by several inhibitors of steroidogenesis and it could be restored by the addition of progesterone, testosterone and estradiol-17 beta, but not the non-aromatizable 5 alpha-dihydrotestosterone. Gonadotropic stimulation enhanced only the synthesis of tissue type PA (t-PA) and not that of urokinase. Likewise, inhibition of steroidogenesis, reduced only the synthesis of t-PA and was reversed by addition of estradiol-17 beta. It seems, therefore, that follicular steroids, most probably estrogen, are involved in the preovulatory rise in follicular t-PA activity.  相似文献   

20.
Cycloheximide (5 mg/kg, i.v.) significantly inhibited ovulation in the rabbit when it was administered as early as 20 h before the ovulation process was initiated by hCG, and as late as 1 h after hCG. The ovulation rate was significantly reduced, but follicular biosynthesis of prostaglandins E and F was only partly inhibited. The biosynthesis of progesterone and oestradiol in follicles during the early stages of the ovulation process was also inhibited. Cycloheximide may therefore inhibit ovulation by a mechanism which is different from the action of indomethacin, and this mechanism may involve the suppression of ovarian steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号