首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of salinity, nutrient level and soil aeration on the transpiration coefficient, defined as amount of water transpired/unit biomass produced (transpiration/biomass ratio) of carrots was investigated under non-limiting conditions with respect to water supply.Under optimum conditions and favorable nutrient supply, the transpiration coefficient amounted to 280–310 g H2O g–1 storage root dry weight (RDW). The transpiration coefficient did not change significantly up to salt concentration of 16 mS cm–1 in the soil solution under otherwise optimum conditions. Higher salt concentrations or low nutrient levels increased the transpiration coefficient to values of 390–540 g H2O g–1 RDW. It is suggested that the transpiration coefficient is not affected by salinity as long as toxic effects and nutrient imbalances do not occur. The transpiration coefficient was not increased by impeded soil aeration. Biomass production was more negatively influenced by adverse soil conditions (salinity, low nutrient level, impeded soil aeration) than was the transpiration coefficient.  相似文献   

2.
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.  相似文献   

3.
Effect of soil compaction on root growth and uptake of phosphorus   总被引:9,自引:0,他引:9  
Summary Zea mays L. andLolium rigidum Gaud. were grown for 18 and 33 days respectively in pots containing three layers of soil each weighing 1 kg. The top and bottom layers were 100 mm deep and they had a bulk density of 1200 kg m–3, while the central layer of soil was compacted to one of 12 bulk densities between 1200 and 1750 kg m–3. The soil was labelled with32P and33P so that the contribution of the different layers of soil to the phosphorus content of the plant tops could be determined. Soil water potential was maintained between –20 and –100 kPa.Total dry weight of the plant tops and total root length were slightly affected by compaction of the soil, but root distribution was greatly altered. Compaction decreased root length in the compacted soil but increased root length in the overlying soil. Where bulk density was 1550 kg m–3, root length in the compacted soil was about 0.5 of the maximum. At that density, the penetrometer resistance of the soil was 1.25 and 5.0 MPa and air porosity was 0.05 and 0.14 at water potentials of –20 and –100 kPa respectively, and daytime oxygen concentrations in the soil atmosphere at time of harvest were about 0.1 m3m–3. Roots failed to grow completely through the compacted layer of soil at bulk densities 1550 kg m–3. No differences were detected in the abilities of the two species to penetrate compacted soil.Ryegrass absorbed about twice as much phosphorus from uncompacted soil per unit length of root as did maize. Uptake of phosphorus from each layer of soil was related to the length of root in that layer, but differences in uptake between layers existed. Phosphorus uptake per unit length of root was higher from compacted than from uncompacted soil, particularly in the case of ryegrass at bulk densities of 1300–1500 kg m–3.  相似文献   

4.
Models of water uptake in mixed stands of vegetation commonly assume that water is partitioned among competing root systems in proportion to relative root length densities. Such an approach assumes implicitly that roots of different species have equivalent hydraulic properties. This was tested for root systems of Grevillea robustaA. Cunn. and maize (Zea maysL.) at a semi-arid site in Kenya. The hydraulic conductances for roots of both species were measured in situat the scale of the whole root or root system using a high pressure flow meter (HPFM). Hydraulic conductivities (r) were expressed per unit root length. Root lengths were estimated for maize plants by soil coring and for G. robustausing a fractal branching model calibrated against soil coring. Mean r was 1.88×10–7 ±0.28×10–7kg s–1 MPa–1 m–1 for G. robustaand 1.25×10–7 ±0.13×10–7kg s–1 MPa–1 m–1 for maize. Values of r were not significantly different (P<0.05), suggesting that the assumption of hydraulic equivalence for root systems of the two species may be valid, at least when hydrostatic gradients are the major driving force for water uptake. Differences in conductivities between these species could arise, however, because of variation in the hydraulic properties of roots not accounted for here, for example because of root age, phenology or responses to the soil environment.  相似文献   

5.
The spatial upscaling of soil respiration from field measurements to ecosystem levels will be biased without studying its spatial variation. We took advantage of the unique spatial gradients of an oak–grass savanna ecosystem in California, with widely spaced oak trees overlying a grass layer, to study the spatial variation in soil respiration and to use these natural gradients to partition soil respiration according to its autotrophic and heterotrophic components. We measured soil respiration along a 42.5 m transect between two oak trees in 2001 and 2002, and found that soil respiration under tree canopies decreased with distance from its base. In the open area, tree roots have no influence on soil respiration. Seasonally, soil respiration increased in spring until late April, and decreased in summer following the decrease in soil moisture content, despite the further increase in soil temperature. Soil respiration significantly increased following the rain events in autumn. During the grass growing season between November and mid-May, the average of CO2 efflux under trees was 2.29 μmol m−2 s−1, while CO2 efflux from the open area was 1.40 μmol m−2 s−1. We deduced that oak root respiration averaged as 0.89 μmol m−2 s−1, accounting for 39% of total soil respiration (oak root + grass root + microbes). During the dry season between mid-May and October, the average of CO2 efflux under trees was 0.87 μmol m−2 s−1, while CO2 efflux from the open areas was 0.51 μmol m−2 s−1. Oak root respiration was 0.36 μmol m−2 s−1, accounting for 41% of total soil respiration (oak root + microbes). The seasonal pattern of soil CO2 efflux under trees and in open areas was simulated by a bi-variable model driven by soil temperature and moisture. The diurnal pattern was influenced by tree physiology as well. Based on the spatial gradient of soil respiration, spatial analysis of crown closure and the simulation model, we spatially and temporally upscaled chamber measurements to the ecosystem scale. We estimated that the cumulative soil respiration in 2002 was 394 gC m−2 year−1 in the open area and 616 gC m−2 year−1 under trees with a site-average of 488 gC m−2 year−1.  相似文献   

6.
Photosynthetic carbon uptake and respiratory C release from soil are major components of the global carbon balance. The use of 13C depleted CO2 (13C = –30) in a free air CO2 enrichment experiment in a mature deciduous forest permitted us to trace the carbon transfer from tree crowns to the rhizosphere of 100–120 years old trees. During the first season of CO2 enrichment the CO2 released from soil originated substantially from concurrent assimilation. The small contribution of recent carbon in fine roots suggests a much slower fine root turnover than is often assumed.13C abundance in soil air correlated best with temperature data taken from 4 to 10 days before air sampling time and is thus rapidly available for root and rhizosphere respiration. The spatial variability of 13C in soil air showed relationships to above ground tree types such as conifers versus broad-leaved trees. Considering the complexity and strong overlap of roots from different individuals in a forest, this finding opens an exciting new possibility of associating respiration with different species. What might be seen as signal noise does in fact contain valuable information on the spatial heterogeneity of tree-soil interaction.  相似文献   

7.
Summary An oxygen diffusion rate of 20×10–8 g cm–2 min–1 is required for root growth of Newport bluegrass. The optimum O.D.R. is in a range above 40.During the first growth period, the vegetative growth was not greatly affected by oxygen treatment except during the <1% treatment which did not permit root growth. After clipping, the growth increased with increasing oxygen to a maximum at the 10% treatment and then exhibited a lower growth under the 21% treatment. The plants survived through all oxygen treatments.The concentration of N, P, and K in the leaves generally increased with increased oxygen supply. Na accumulated to a high concentration under the lowest oxygen treatment.Paper No. 1489, Citrus Research Center, Agricultural Experiment Station, Riverside, California.  相似文献   

8.
Ekblad A  Boström B  Holm A  Comstedt D 《Oecologia》2005,143(1):136-142
Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5–27.6% of dry weight) and soil temperature (range 8–17.5°C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0–3.4 mol C m–2 s–1) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1–4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. 13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1–6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration.  相似文献   

9.
Changes of pH across the rhizosphere induced by roots   总被引:15,自引:2,他引:13  
P. H. Nye 《Plant and Soil》1981,61(1-2):7-26
Summary Plants that absorb nitrogen as NO3 tend to raise the pH in the rhizosphere. Those absorbing nitrogen as NH4 + or N2 lower the pH. The change in pH near the root surface may be calculated approximately from the H+ or HCO3 efflux and radius of the root; and the pH buffering capacity, moisture content, initial pH and pCO 2 of the soil. An accurate equation, solved numerically, also takes account of root hairs, mass flow and slow acid-base reaction in the soil. The pH at the root surface will often differ from the pH a few mm away by 1–2 units.  相似文献   

10.
Pandeya  S.B.  Singh  A.K.  Dhar  P. 《Plant and Soil》1998,198(2):117-125
The influence of fulvic acid (FA) on the porous system self diffusion coefficient (Dp) of Fe in Calciorthent soils of Bihar, India, was determined with the half cell technique. Significantly higher values of Dp were observed when Fe was applied as Fe–FA to the soil compared to FeCl3. The capacity factor of Fe decreased considerably due to its complexation by fulvic acid, resulting in an increase in the Dp of Fe. The organic carbon content of the soils correlated positively with Dp of Fe while it showed a negative relationship with active CaCO3 and the clay content of soils. A soil culture system simulating acquisition of Fe by rice was developed to investigate transport of Fe from the soil solution to the surface of the plant roots through diffusion and mass flow. Mass flow contributed only 5–9% of the total Fe uptake by rice, with the remainder being ascribed to diffusion and root interception. A significant relationship ( r =0.96**) between Dp- and Fe-uptake by rice was observed. The uptake of Fe by the crop and the percentage of tissue iron content derived from fertilizer were higher in the case of Fe–FA in comparison with FeCl3, indicating the superiority of organically complexed Fe fertilizers over inorganic salts.  相似文献   

11.
Field and laboratory studies were conducted to determine effects of nitrogen fertilizers and soil water content on N2O and CH4 fluxes in a humisol located on the Central Experimental Farm of Agriculture Canada, Ottawa. Addition of 100 kg N ha–1 as either urea or NaNO3 had no significant effect on soil CH4 flux measured using chambers. Fertilization with NaNO3 resulted in a significant but transitory stimulation of N2O production. Inorganic soil N profiles and the potential nitrification rate suggested that much of the NH 4 + from urea hydrolysis was rapidly nitrified. CH4 fluxes measured using capped soil cores agreed well with fluxes measured using field chambers, and with fluxes calculated from soil gas concentration gradients using Fick's diffusion law. This humisol presents an ideal, unstructured, vertically homogeneous system in which to study gas diffusion, and the influence of gas-filled porosity on CH4 uptake. In soil cores gradually saturated with H2O, the relationship of CH4 flux to gas-filled porosity was an exponential rise to a maximum. Steepening CH4 concentration gradients partially compensated for the decreasing diffusion coefficient of CH4 in soil matrix air as water content increased, and diffusion limitation of CH4 oxidation occurred only at water contents > 130% (dry weight), or gas-filled porosities < 0.2.Corresponding author  相似文献   

12.
Summary The effect of exogenous applications of gibberellins (GAs) or the growth retardant -chloroethyltrimethylammonium chloride (CCC) on root nodule formation and activity (C2H2-reduction) in soya was studied. Daily foliar application of GA3 (2.89×10–6 M) delayed the formation of nodule initials and reduced the numbers mass nodule–1 and specific activity of nodules by 43%, 31% and 47% respectively, without affecting plant growth. Similar effects on nodulation were produced by foliar application of GA4 (3.01×10–5 M) or GA7 (3.03×10–5 M), or by the addition of GA3 (2.89×10–6 M) to the rooting medium. GA effectiveness in reducing nodule numbers was decreased by delaying its application until after the initial infection process had occurred, but the nodules formed were smaller and less active than those of the untreated control plants. The GA effect on nodulation and nodule activity was not associated with alterations in root exudate or due to a direct inhibitory effect of the hormone on the nitrogenase system. When the endogenous root content of GA-like substances was reduced (86% decrease) by foliar application of CCC (6.30×10–5 M), nodule numbers were increased by 56%, but nodule size and total nodule activity were similar to those of control plants. The GA and CCC treatments had no effect on rhizobial growth in liquid culture nor on root colonisation by rhizobia.The results suggest that the endogenous content of root GA may have a regulatory role in both the infection process and in subsequent nodule morphogenesis, thus controlling both the number and effectiveness of the root nodules formed.  相似文献   

13.
Nitrogen catch crops help to reduce the loss of nitrogen from arable cropping systems during autumn and winter. The ability of catch crops to absorb nitrogen from the soil profile is affected by rate and depth of colonization of the soil by roots. The aim of the current work was to analyze total root length and root length density of catch crops in relation to above ground growth, nitrogen supply and crop species. In two field experiments roots were sampled with an auger. Experimental factors included crop species (winter rye, Secale cereale and forage rape, Brassica napus ssp. oleifera (Metzg.) Sinsk., or oil radish, Raphanus sativus spp. oleiferus (DC.) Metzg.), two sowing dates S1 and S2 (end of August and three weeks later) and two nitrogen treatments: N0, no nitrogen applied, and N1, nitrogen applied at non-limiting rate.The natural logarithm of the total root length, measured in the top 40 cm, L0–40 (km m-2), was linearly related to natural logarithm of the dry weight of the shoot, W (g m-2). There was no effect of species or sowing date on this relation. For a given W, N1 treatments showed lower values of L0–40 than N0 treatments. The decline in root length density, D (cm cm-3), with depth, X (cm), was described with the function ln D = ln D0 – qX, where D0 is the value of D at zero depth and q the linear coefficient. D0 was linearly related to L0–40, without effect of species, time of observation or N supply. The ratio D0/q, an estimate of the absolute root length, was 1.24 × L0–40.Together the relations enable estimates to be made of total root length and of root length distribution with depth using shoot dry weight of catch crops and its change with time as input. The generation of such estimates of root distribution is necessary for model studies in which the efficacy of catch crops to prevent N losses is evaluated in relation to sowing dates, distribution of N in the soil profile and the distribution of rainfall in the season.  相似文献   

14.
Based on a review of N2O field studies in Europe, major soil, climate and management controls of N2O release from agricultural mineral soils in the European Union have been identified. Data for these N2O emission drivers can easily be gathered from statistical services. Using stepwise multivariate linear regression analysis, empirical first order models of N2O emissions have been established which allow – in contrast to existing large-scale approaches – a regionally disaggregated estimation of N2O emissions at sub-national, national and continental level in the temperate and boreal climate regions of Europe. Arable soils showed lower mean and maximum emissions in oceanic temperate climate (Temperate West) than in pre-alpine temperate and sub-boreal climate (Sub-boreal Europe). Therefore, two separate regression models were developed. Nitrous oxide emissions from arable soils the Temperate West amount to an average flux rate below 2 kg N2O-N ha–1 yr–1 and rarely exceed 5 kg N2O-N ha–1 yr–1. They are modelled by the parameters fertiliser, topsoil organic carbon and sand content. In Sub-boreal European arable soils, N2O emissions vary in a much wider range between 0 and 27 kg N2O-N ha–1 yr–1 in dependence of available nitrogen, represented in the model by fertiliser and topsoil nitrogen content. Compared to existing methods for large scale inventories, the regression models allow a better regional fit to measured values since they integrate additional driving forces for N2O emissions. For grasslands, a fertiliser-based model was established which yields higher emission estimates than existing ones. Due to an extreme variability, no climate, soil nor management parameters could be included in the empirical grasslands model.  相似文献   

15.
Summary A chemostat was used as a model system to study competitive interactions of diazotrophic microorganisms. Enrichment experiments were carried out under microaerobic conditions (8.7 mol O2/l) with malate as the sole carbon source. The starting material was a Korean rice soil including intact root pieces. The enrichment process was governed by the dilution rate. High dilution rates resulted in the enrichment ofAzospirillum lipoferum, whereas low dilution rates led to the predominance of an unidentified organism, named Isolate R. Dilution rates were set in the range from D=0.005 to D=0.1 h–1. The growth kinetics of both organisms followed Monod's model in the enrichment culture. From the experiments, the maximum specific growth rate ofA. lipoferum and Isolate R were 0.069 h–1 and 0.025 h–1, respectively. The corresponding Ks-values were 8.4 and 0.9 (mg. 1–1). The point of theoretical coexistence of both organisms was calculated to occur at a substrate concentration of s=3.0 (mg.l–1) with a growth of rate =0.018 h–1. Hence the preset nutritional niches occupied by at least two organisms.Azospirillum lipoferum seems to represent the copiotroph microflora and Isolate R is of the oligotroph type. In addition to its high substrate affinity Isolate R liberatedca. 75% of the fixed nitrogen into the medium, which indicates its potential role for mutualistic interactions in the rhizosphere.  相似文献   

16.
Turnover and distribution of root exudates of Zea mays   总被引:1,自引:0,他引:1  
Decomposition and distribution of root exudates of Zea mays L. were studied by means of 14CO2 pulse labeling of shoots on a loamy Haplic Luvisol. Plants were grown in two-compartment pots, where the lower part was separated from the roots by monofilament gauze. Root hairs, but not roots, penetrated through the gauze into the lower part of the soil. The root-free soil in the lower compartment was either sterilized with cycloheximide and streptomycin or remained non-sterile. In order to investigate exudate distribution, 3 days after the 14C labeling, the lower soil part was frozen and sliced into 15, one-mm thick layers using a microtome. Cumulative 14CO2 efflux from the soil during the first 3 days after 14C pulse labeling did not change during plant growth and amounted to about 13–20% of the total recovered 14C (41–55% of the carbon translocated below ground). Nighttime rate of total CO2 efflux was 1.5 times lower than during daytime because of tight coupling of exudation with photosynthesis intensity. The average CO2 efflux from the soil with Zea mays was about 74 g C g–1 day–1 (22 g C m–2 day–1), although, the contribution of plant roots to the total CO2 efflux from the soil was about 78%, and only 22% was respired from the soil organic matter. Zea mays transferred about 4 g m–2 of carbon under ground during 26 days of growth. Three zones of exudate concentrations were identified from the distribution of the 14C-activity in rhizosphere profiles after two labeling periods: (1) 1–2 (3) mm (maximal concentration of exudates) 2) 3–5 mm (presence of exudates is caused by their diffusion from the zone 1); (3) 6–10 mm (very insignificant amounts of exudates diffused from the previous zones). At the distance further than 10 mm no exudates were found. The calculated coefficient of exudate diffusion in the soil was 1.9 × 10–7 cm2 s–1.  相似文献   

17.
Within the last 30 years, researchers have explored what role hypoxia might play in causing permeability changes in the pulmonary microvasculature. Since the data accumulated thus far are unclear, the effects of hypoxia on microvascular transport in the isolated, Ringer's perfused adult rabbit lung was observed and the following parameters were measured or computed for both oxygenated and hypoxic perfusates: pulmonary arterial (ra) and pulmonary venous (rv) resistances, pulmonary capillary filtration coefficients (Kf), and pulmonary capillary endothelial reflection coefficients () for NaCl and inulin. Separate reservoir bottles were used to create the desired oxygenated (aeration of solution with 95% O2-5% CO2) gas mixture or hypoxic (aeration of solution with 95% N2-5% CO2) gas mixture. A higher, but not significant, resistance value was found during the oxygenated state. A significant increase in the pulmonary capillary filtration coefficient during hypoxia (10.72 × 10–4±0.446 × 10–4 cm3/s cm H2O for the hypoxic perfusate and 8.80 × 10–4±0.384 × 10–4 cm3/s cm H2O for the oxygenated perfusate) was found and a significant difference between oxygenated and hypoxic pulmonary capillary reflection coefficients for inulin was computed (oxygenated solution revealed a finding of 0.120±0.003 and the hypoxic solution revealed 0.105±0.002). These findings imply a change in the microvascular permeability during hypoxia. According to the pore theory, a change in pore number, pore size, or both could have occurred. However, from the reflection coefficient data, a change in pore radius seems most likely.  相似文献   

18.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

19.
Summary A laboratory study of the interaction of H2O frost with samples of the minerals olivine (Mg,Fe)2SiO4 and pyroxene (Mg,Fe)SiO3 at –11°C to –22°C revealed that an acidic oxidant was produced. Exposure of the frost-treated minerals to liquid H2O produced a sudden drop in pH and resulted in the production of copious O2(g) (as much as ~ 1020 molecules g–1). Exposure of frost-treated samples to 5 ml of 0.1M HCOONa solution resulted in the rapid oxidation of up to 43% of the formate to CO2(g). These reactions were qualitatively similar to the chemical activity observed during the active cycles of the Viking lander Gas Exchange and Labeled Release Biology experiments. Attempts to identify the oxidant by chemical indicators were inconclusive, but they tentatively suggested that chemisorbed hydrogen peroxide may have formed. The formation of chemisorbed peroxide could be explained as a byproduct of the chemical reduction of the mineral. The following model was proposed. Hc was incorporated into the mineral from surface frost. This would have left behind a residual of excess OH (ads) (relative to surface H+). Electrons were then stripped from the surface OH (ads) (due to the large repulsive potential between neighboring OH (ads)) and incorporated into the crystal to restore charge balance and produce a chemical reduction of the mineral. The resultant surface hydroxyl radicals could then have combined to form the more stable chemisorbed hydrogen peroxide species. While the chemisorbed peroxide should be relatively stable at low temperatures, it should tend to decay to O(ads) + H2O(g) at higher temperatures with an activation energy of 34 kcal mole–1. This is consistent with the long-term storage and sterilization behavior of the Viking soil oxidants. It is possible that as little as 0.1–1% frost-weathered material in the Martian soil could have produced the unusual chemical activity that occurred during the Viking Gas Exchange and Labeled Release experiments.This paper contains the material given in invited presentations at the COSPAR Meeting, Innsbruck, Austria, 5–7 June 1978 and at the Second Conference on Simulation of Mars Surface Properties, NASA Ames Research Center, 17–18 August 1978  相似文献   

20.
Temperate forests of North America are thought to besignificant sinks of atmospheric CO2. Wedeveloped a below-ground carbon (C) budget forwell-drained soils in Harvard Forest Massachusetts, anecosystem that is storing C. Measurements of carbonand radiocarbon (14C) inventory were used todetermine the turnover time and maximum rate ofCO2 production from heterotrophic respiration ofthree fractions of soil organic matter (SOM):recognizable litter fragments (L), humified lowdensity material (H), and high density ormineral-associated organic matter (M). Turnover timesin all fractions increased with soil depth and were2–5 years for recognizable leaf litter, 5–10 years forroot litter, 40–100+ years for low density humifiedmaterial and >100 years for carbon associated withminerals. These turnover times represent the timecarbon resides in the plant + soil system, and mayunderestimate actual decomposition rates if carbonresides for several years in living root, plant orwoody material.Soil respiration was partitioned into two componentsusing 14C: recent photosynthate which ismetabolized by roots and microorganisms within a yearof initial fixation (Recent-C), and C that is respiredduring microbial decomposition of SOM that resides inthe soil for several years or longer (Reservoir-C).For the whole soil, we calculate that decomposition ofReservoir-C contributes approximately 41% of thetotal annual soil respiration. Of this 41%,recognizable leaf or root detritus accounts for 80%of the flux, and 20% is from the more humifiedfractions that dominate the soil carbon stocks.Measurements of CO2 and 14CO2 in thesoil atmosphere and in total soil respiration werecombined with surface CO2 fluxes and a soil gasdiffusion model to determine the flux and isotopicsignature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cmof the soil (O + A + Ap horizons). The average residencetime of Reservoir-C in the plant + soil system is8±1 years and the average age of carbon in totalsoil respiration (Recent-C + Reservoir-C) is 4±1years.The O and A horizons have accumulated 4.4 kgC m–2above the plow layer since abandonment by settlers inthe late-1800's. C pools contributing the most to soilrespiration have short enough turnover times that theyare likely in steady state. However, most C is storedas humified organic matter within both the O and Ahorizons and has turnover times from 40 to 100+ yearsrespectively. These reservoirs continue to accumulatecarbon at a combined rate of 10–30 gC mminus 2yr–1. This rate of accumulation is only 5–15% of the total ecosystem C sink measured in this stand using eddy covariance methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号