首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

2.
Abstract Membranes of the extremely thermoacidophilic archaeon Desulfurolobus ambivalens grown under aerobic conditions contain a quinol oxidase of the cytochrome aa 3-type as the most prominent hemoprotein. The partially purified enzyme consists of three polypeptide subunits with apparent molecular masses of 40, 27 and 20 kDa and contains two heme A molecules and one copper atom. CO difference spectra suggest one heme to be a heme a 3-centre. The EPR spectra indicate the presence of a low-spin and a high-spin heme species. Redox titrations of the solubilized enzyme show the presence of two reduction processes, with apparent potentials of + 235 and + 330 mV. The enzyme cannot oxidize reduced cytochrome c , but rather serves as an oxidase of caldariella quinone. Due to their very simple composition, D . ambivalens cell appear as a promising candidate to study Structure-function relationships of cytochrome aa 3 in the integral membrane state.  相似文献   

3.
Brochothrix thermosphacta, grown in batch culture in a yeast-dextrose broth, at temperatures from 30 °C to 10 °C, contained diverse membrane-bound respiratory cytochromes. Under conditions of moderate aeration, cytochromes of the a-, b- and d-type were detected at all growth temperatures, but the proportions changed as a function of temperature, with the spectra of cells grown at 10 or 15 °C being dominated by a-type cytochrome(s). Cytochrome a 3 was detected by its reactions with CO and cyanide in cells from all growth conditions. An additional cytochrome a, which was not cyanide-reactive, was also detected, suggesting the presence of an aa 3 oxidase complex. Cytochrome d was cyanide- and CO-reactive, but not detectable in photodissociation spectra, presumably because of the very rapid recombination of CO at the sub-zero temperatures used. Decreasing the oxygen transfer rates to batch cultures resulted in enhanced expression of cytochrome d and changed the proportion of the aa 3-type oxidase that could be attributed to ligand-binding cytochrome a 3; at the lowest oxygen transfer rates, no cytochrome a was detected, suggesting the presence of a cytochrome ba 3 terminal oxidase complex. Intact cells showed no evidence of a c-type cytochrome and no haem C was detected in membrane preparations. After growth at 10°C, the cytochrome composition of B. campestris was essentially identical to that of B. thermosphacta. The multiplicity of putative terminal oxidases in B. thermosphacta is discussed.  相似文献   

4.
B. González  J.L. Chávez  N.A. Castro  S. Gómez  C. Kennedy 《BBA》2006,1757(12):1614-1622
In highly aerobic environments, Gluconacetobacter diazotrophicus uses a respiratory protection mechanism to preserve nitrogenase activity from deleterious oxygen. Here, the respiratory system was examined in order to ascertain the nature of the respiratory components, mainly of the cyanide sensitive and resistant pathways. The membranes of G. diazotrophicus contain Q10, Q9 and PQQ in a 13:1:6.6 molar ratios. UV360 nm photoinactivation indicated that ubiquinone is the electron acceptor for the dehydrogenases of the outer and inner faces of the membrane. Strong inhibition by rotenone and capsaicin and resistance to flavone indicated that NADH-quinone oxidoreductase is a NDH-1 type enzyme. KCN-titration revealed the presence of at least two terminal oxidases that were highly sensitive and resistant to the inhibitor. Tetrachorohydroquinol was preferentially oxidized by the KCN-sensitive oxidase. Neither the quinoprotein alcohol dehydrogenase nor its associated cytochromes c were instrumental components of the cyanide resistant pathway. CO-difference spectrum and photodissociation of heme-CO compounds suggested the presence of cytochromes b-CO and a1-CO adducts. Air-oxidation of cytochrome b (432 nm) was arrested by concentrations of KCN lower than 25 μM while cytochrome a1 (442 nm) was not affected. A KCN-sensitive (I50 = 5 μM) cytochrome bb and a KCN-resistant (I50 = 450 μM) cytochrome ba quinol oxidases were separated by ion exchange chromatography.  相似文献   

5.
Inhibitory activity of Fe-ion-catalyzed radical oxidation products from 22 types of phenolic compounds toward xanthine oxidase (XO) was investigated. Phenols are readily oxidizable compounds in nature and, thus, showed potent antioxidant activities. Among the phenols screened in this study, noticeable activity was observed in the oxidation product of caffeic acid, whereas almost no XO-inhibitory activity of caffeic acid was observed. Assay-guided purification of the oxidation product of caffeic acid afforded a highly potent XO inhibitor, with an IC50 value that was calculated to be 60 nmol L−1, which indicated XO-inhibitory activity much stronger than that of allopurinol (IC50 = 1 μmol L−1), a potent XO inhibitor and excellent medicine for the treatment of gout. The chemical structure of this new XO inhibitor was investigated by one- and two-dimensional NMR and HR–ESI–MS analyses, and the unique tetracyclic structure was confirmed by synthesis starting from commercially available 1,2,4-trimethoxybenzene and 3,4-dimethoxylbenzoyl chloride.  相似文献   

6.
Abstract The amino acid sequence obtained by translating the nucleotide sequence of a 0.55 kb fragment, amplified from Azotobacter vinelandii chromosomal DNA by PCR, was 57% identical to part of the Escherichia coli cyoB gene, encoding subunit I of the cytochrome bo -type quinol oxidase. This fragment was mutated in vitro by insertion of a kanamycin-resistance cassette and introduced into the chromosome of A. vinelandii by homologous recombination. The mutant contained no spectrally detectable cytochrome o . However, in the stationary phase of growth, the level of the alternative oxidase (cytochrome bd ) was 11-fold higher than in the wild-type strain. Respiration of the mutant was insensitive to chlorpromazine, an inhibitor thought to act specifically on cytochrome o . Cytochrome o -deficient mutants fixed nitrogen in air, clearly distinguishing the role of this oxidase from that of cytochrome bd , which is required for respiratory protection of oxygen-labile nitrogenase.  相似文献   

7.
(R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.  相似文献   

8.
The phylogenic relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenic relationships. The phylogenic patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.  相似文献   

9.
Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74?µM and showed a high selectivity index (SI?>?81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki?=?0.26?µM) with a potency greater than toloxatone (IC50?=?0.93?µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78?µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (?8.5?kcal/mol) was greater than that for hMAO-B (?5.6?kcal/mol) and that of 4 for hMAO-A (?7.3?kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

10.
The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin-containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.  相似文献   

11.
Using mitochondrial DNA cytochrome c oxidase subunit I and nuclear DNA 28S rRNA data, we explored the phylogenetic relationships of the family Pimoidae (Arachnida: Araneae) and tested the North America to Asia dispersal hypothesis. Sequence data were analysed using maximum parsimony and Bayesian inference. A phylogenetic analysis suggested that vicariance, instead of dispersal, better explained the present distribution pattern of Pimoidae. Times of divergence events were estimated using penalized likelihood method. The dating analysis suggested that the emergence time of Pimoidae was approximately 140 million years ago (Ma). The divergence time of the North American and Asian species of Pimoa was approximately 110 Ma. Our phylogenetic hypothesis supports the current morphology‐based taxonomy and suggests that the cave dwelling might have played an important role in the speciation of pimoids in arid areas.  相似文献   

12.
A detailed reaction cycle for cytochrome oxidase, an electron-transport-driven proton pump, has been presented earlier by our research group. The essential feature of the model is that both cytochrome a and CuA must be reduced in order to allow the transition from the electron and proton input state to the output state. The model is thus based on an indirect coupling between electron transfer and proton translocation.In this study, the same model is examined with respect to (1) intrinsic electron and proton leaks and (2) the effect of applying an electrochemical potential gradient on the pump incorporated in a membrane, both with respect to the electrical and chemical components.The model is successfully used to simulate various experimental results. Comparisons of experimental results with simulations based on the model support the existence of electron and proton leaks. The analysis of electron leaks suggests that electron gating is best achieved by varying the reorganization energy rather than by varying the reduction potentials.It is also suggested that both the electrical and chemical components of the electrochemical potential gradient are responsible for the regulation of the enzyme activity. Furthermore, an attempt is made to interpret the seemingly contradictory results obtained when measuring the pH dependence of the reduction potential of cytochrome a. In addition, the simulations support the assumption that protons are pumped by a mechanism that combines a membrane Bohr effect with the transition-state mechanism.Abbreviations R molar gas constant - k B Boltzmann contant - F Faraday constant - e elementary charge - T absolute temperature - transmembrane electrochemical potential gradient - pH transmembrane pH difference - pH1 and pH2 inside (matrix) and outside (cytosol) pH, respectively - transmembrane electrical potential - E m midpoint potential  相似文献   

13.
By manipulating the physical properties of oxygen, cells are able to harvest the large thermodynamic potential of oxidation to provide a substantial fraction of the energy necessary for cellular processes. The enzyme largely responsible for this oxygen manipulation is cytochrome c oxidase, which resides at the inner mitochondrial membrane. For unknown reasons, cancer cells do not maximally utilize this process, but instead rely more on an anaerobic-like metabolism demonstrating the so-called Warburg effect. As the enzyme at the crossroads of oxidative metabolism, cytochrome c oxidase might be expected to play a role in this so-called Warburg effect. Through protein assay methods and metabolic studies with radiolabeled glucose, alterations associated with cancer and cytochrome c oxidase subunit levels are explored. The implications of these findings for cancer research are discussed briefly.  相似文献   

14.
DNA sequence comparisons of three mitochondrial DNA genes were used to reveal phylogenetic relationships among four species and a sub-species of Mullidae family. This is the first report using mitochondrial DNA sequence data to infer intraspecific relationship among different populations of Mullus barbatus and Mullus surmuletus; phylogenetic relationships between M. barbatus and its sub-species; M. barbatus ponticus. Cytochrome b, 12S ribosomal RNA, and cytochrome oxidase II regions of 242 individuals belonging to species M. barbatus, M. surmuletus, Upeneus moluccensis, Upeneus pori and sub-species M. barbatus ponticus were sequenced and phylogenetic trees were constructed using four different algorithms. The phylogenetic trees constructed support the existing taxonomical data of two mullid genera (Mullus, Upeneus). Molecular data shows no significant difference between same species of different geographical populations. The results suggest that the molecular difference is not large enough between M. barbatus and M. barbatus ponticus to consider them as sub-species.  相似文献   

15.
Abstract

Oxidative stress in atrial tissue may be causally related to atrial fibrillation as suggested by clinical and animal studies. Reactive oxygen species (ROS) are known to play a key role in fibrosis and the induction of after-depolarization and triggered activity. Therefore, suppressing oxidative stress may have a potential beneficial role in the management of atrial fibrillation. Since increased NADPH oxidase activity is shown to play a key role in generation of ROS in atrial tissue and in atrial fibrillation, our proposed strategy to target upstream inhibition of ROS production by inhibition of NADPH oxidase activity may provide a novel approach to prevent atrial fibrillation recurrences. We hypothesize that apocynin could be effective against atrial fibrillation, by virtue of its potent inhibitory effect of a major oxidative system (i.e. NADPH oxidase) combined with its demonstrated anti-inflammatory, antifibrotic and antihypertensive effects which partially are driven from its antioxidant property. Atrial fibrillation is known to be initiated by the interaction of these multiple factors.  相似文献   

16.
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH distance and CuB1+-H2O structure keeping Fea33+-OH state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.  相似文献   

17.
Following hints from X-ray data (Ostermeier C et al., 1997, Proc Natl Acad Sci USA 94:10547-10553; Yoshikawa S et al., 1998, Science 280: 1723-1729), chemical evidence is presented from four distantly related cytochrome-c oxidases for the existence of a copperB-coordinated His240-Tyr244) cross-link at the O2-activating Heme Fea3-CuB center in the catalytic subunit 1 of the enzyme. The early evolutionary invention of this unusual structure may have prevented damaging *OH-radical release at e(-)-transfer to dioxygen and thus have enabled O2 respiration.  相似文献   

18.
Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.  相似文献   

19.
Relationships within Chilopoda (centipedes) are assessed based on 222 morphological characters, complete 18S rRNA sequences for 70 chilopod terminals, the D3 region of 28S rRNA for 65 terminals, 16S rRNA sequences for 54 terminals and cytochrome c oxidase subunit I sequences for 45 terminals. Morphological and molecular data for seven orders of Diplopoda are used to root cladograms for Chilopoda. Analyses use direct character optimization for 15 gap and substitution models. The Pleurostigmophora and Epimorpha s.l. hypotheses are largely stable to parameter variation for the combined data; the latter clade is formalized as the new taxon Phylactometria. The combined data include parameter sets that support either the monophyly of Epimorpha s.str. (=Scolopendromorpha + Geophilomorpha) or Craterostigmus + Geophilomorpha; the former derives its support from morphology and the nuclear ribosomal genes. Monophyly of Lithobiomorpha and the sister group relationship between Lithobiidae and Henicopidae are stable for morphological and combined data, and are also resolved for the molecular data for 14 of 15 parameter sets. The fundamental split in Scolopendromorpha is between Cryptopidae and Scolopendridae sensu Attems. Blind scolopendromorphs unite as a clade in most molecular and combined analyses, including those that minimize incongruence between data partitions. Geophilomorpha divides into Placodesmata and Adesmata under nine of 15 explored parameter sets.  相似文献   

20.
The xanthine oxidase (XO) plays an important role in producing uric acid, and therefore XO inhibitors are considered as one of the promising therapies for hyperuricemia and gout. We have previously reported a series of XO inhibitors with pyrazole scaffold to extend the chemical space of current XO inhibitors. Herein, we describe further structural optimization to explore the optimal heterocycle by replacing the thiazole ring of Febuxostat with 5 heterocycle scaffolds unexplored in this field. All of these efforts resulted in the identification of compound 8, a potent XO inhibitor (IC50?=?48.6?nM) with novel 2-phenylthiazole-4-carboxylic acid scaffold. Moreover, lead compound 8 exhibited hypouricemic effect in potassium oxonate-hypoxanthine-induced hyperuricemic mice. These results promote the understanding of ligand-receptor interaction and might help to design more promising XO inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号