首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Primula (c. 430 species) and relatives (Primulaceae) are paradigmatic to our understanding of distyly. However, the common co-occurrence of distyly and monomorphy in closely related groups within the family has made the interpretation of its evolution difficult.Here, we infer a chloroplast DNA (cpDNA) phylogeny for 207 accessions, including 51% of the species and 95% of the sections of Primula with monomorphic populations, using Bayesian methods. With this tree, we infer the distribution of ancestral states on critical nodes using parsimony and likelihood methods.The inferred cpDNA phylogeny is consistent with prior estimates. The most recent common ancestor (MRCA) of Primula is resolved as distylous using both methods of inference. However, whether the distyly in Primula, Hottonia, and Vitaliana arose once or three independent times is not clear.We conclude that monomorphism in descendants of the MRCA of Primula is derived from distyly in all cases. Thus, scenarios for the evolution of distyly that rely on the persistence of primitive monomorphy (such as in Primula section Sphondylia) require re-evaluation.  相似文献   

2.
Mate choice is expected to be important for the fitness of both sexes for species in which successful reproduction relies strongly on shared and substantial parental investment by males and females. Reciprocal selection may then favour the evolution of morphological signals providing mutual information on the condition/quality of tentative partners. However, because males and females often have differing physiological constraints, it is unclear which proximate physiological pathways guarantee the honesty of male and female signals in similarly ornamented species. We used the monomorphic king penguin (Aptenodytes patagonicus) as a model to investigate the physiological qualities signalled by colour and morphological ornaments known to be under sexual selection (coloration of the beak spots and size of auricular feather patches). In both sexes of this slow‐breeding seabird, we investigated the links between ornaments and multiple indices of individual quality; including body condition, immunity, stress and energy status. In both sexes, individual innate immunity, resting metabolic rate, and the ability to mount a stress response in answer to an acute disturbance (capture) were similarly signalled by various aspects of beak coloration or auricular patch size. However, we also reveal interesting and contrasting relationships between males and females in how ornaments may signal individual quality. Body condition and oxidative stress status were signalled by beak coloration, although in opposite directions for the sexes. Over an exhaustive set of physiological variables, several suggestive patterns indicated the conveyance of honest information about mate quality in this monomorphic species. However, sex‐specific patterns suggested that monomorphic ornaments may signal different information concerning body mass and oxidative balance of males and females, at least in king penguins.  相似文献   

3.
Biases in the operational sex ratio (OSR) are seen as the fundamental reason behind differential competition for mates in the two sexes, and as a strong determinant behind differences in choosiness. This view has been challenged by Kokko and Monaghan, who argue that sex-specific parental investment, mortalities, mate-encounter rates and quality variation determine the mating system in a way that is not reducible to the OSR. We develop a game-theoretic model of choosiness, signalling and parental care, to examine (i) whether the results of Kokko and Monaghan remain robust when its simplifying assumptions are relaxed, (ii) how parental care coevolves with mating strategies and the OSR and (iii) why mutual mate choice is observed relatively rarely even when both sexes vary in quality. We find qualitative agreement with the simpler approach: parental investment is the primary determinant of sex roles instead of the OSR, and factors promoting choosiness are high species-specific mate-encounter rate, high sex-specific mate-encounter rate, high cost of breeding (parental investment), low cost of mate searching and highly variable quality of the opposite sex. The coevolution of parental care and mating strategies hinders mutual mate choice if one parent can compensate for reduced care by the other, but promotes it if offspring survival depends greatly on biparental care. We argue that the relative rarity of mutual mate choice is not due to biases in the OSR. Instead, we describe processes by which sexual strategies tend to diverge. This divergence is prevented, and mutual mate choice maintained, if synergistic benefits of biparental care render parental investment both high and not too different in the two sexes.  相似文献   

4.
Sexual differences in food provisioning rates of monomorphic seabirds are well known but poorly understood. Here, we address three hypotheses that attempt to explain female-biased food provisioning in common guillemots Uria aalge : (1) males spend more time in nest defence, (2) females have greater foraging efficiency, and (3) males allocate a greater proportion of foraging effort to self-maintenance. We found that males spent no more time with chicks than females but made longer trips and travelled further from the colony. There was extensive overlap between sexes in core foraging areas, indicating that females were not excluding males from feeding opportunities close to the colony. However, as a result of their longer trips, the total foraging areas of males were much greater than those of females. There was no difference between sexes in overall dive rate per hour at sea, in behaviour during individual dives or in a number of other measures of foraging efficiency including the frequency, depth and duration of dives and the dive: pause ratio during the final dive bout of each trip, which was presumably used by both sexes to obtain prey for the chick. These data strongly suggest that sexes did not differ in their ability to locate and capture prey. Yet males made almost twice as many dives per trip as females, suggesting that males made more dives than females for their own benefit. These results support the hypothesis that female-biased food provisioning arose from a difference between sexes in the allocation of foraging effort between parents and offspring, in anticipation of a prolonged period of male-only post-fledging care of the chick, and not from differences in foraging efficiency or time spent in nest defence.  相似文献   

5.
Wan QH  Zhang P  Ni XW  Wu HL  Chen YY  Kuang YY  Ge YF  Fang SG 《PloS one》2011,6(1):e14518
The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ~ DRB1 ~ DRB3 ~ DQA1 ~ DQB2 (H1) and DRA1*02 ~ DRB2 ~ DRB4 ~ DQA2 ~ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.  相似文献   

6.
Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号