首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulase enzyme system of Trichoderma reesei RUT C-30 has been separated by DEAE ion exchange chromatography into four fractions. Their specificity towards substituted cellulose and cellooligosaccharides was revealed by analytical IEF and activity stains. Fraction EGI (26% of the total protein) exhibited mainly endoglucanase activity on carboxymethylcellulose (CMC) whereas endoglucanases EGII and EGIII (15% of the total protein) showed high activity towards CMC as well as xylan, 4-methylumbelliferyl cellobioside [MeUmb(Glc)2] and p-nitrophenyl lactoside (pNPL). A subfraction of EGI (pI 5.9) which has been described in the literature as a cellobiohydrolase (CBHII) was isolated by preparative isoelectric focusing, and was shown to have only 3 U CMCase activity per milligram. Turbidimetric measurements and phase contrast microscopy demonstrated differences between endoglucanase and cellobiohydrolase behaviour during the hydrolysis of purified cellulose (Solka Floc BW-40). Treatment of the purified cellulose with endoglucanases resulted in fibre breakdown into small particles. This was contrasted with no morphological change to the fibres when contacted with the cellobiohydrolase. By this technique it was revealed that the EGI subfraction (pI 5.9) behaves as an endoglucanase and not as a cellobiohydrolase. Incubation of this enzyme with acid-swollen cellulose resulted in cellotriose production, as it did with other endoglucanases which exhibited CMCase activities >; 100 U mg−1. Cellotriose was not present during the hydrolysis of acid-swollen cellulose with the CBHI fraction.  相似文献   

2.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

3.
To improve the cellulolytic activity of a yeast strain displaying endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414, the genes encoding the cellulose-binding domain (CBD) of EGII, cellobiohydrolase I (CBHI) and cellobiohydrolase II (CBHII) from T. reesei QM9414, were fused with the catalytic domain of EGII and expressed in Saccharomyces cerevisiae. Display of each of the recombinant EGIIs was confirmed using immunofluorescence microscopy. In the case of EGII-displaying yeast strains in which the CBD of EGII was replaced with the CBD of CBHI or CBHII, the binding affinity to Avicel and hydrolytic activity toward phosphoric acid swollen Avicel were similar to that of a yeast strain displaying wild-type EGII. On the other hand, the three yeast strains displaying EGII with two or three tandemly aligned CBDs showed binding affinity and hydrolytic activity higher than that of the yeast strain displaying wild-type EGII. This result indicates that the hydrolytic activity of yeast strains displaying recombinant EGII increases with increased binding ability to cellulose.  相似文献   

4.
Trichoderma reesei strains were constructed for production of elevated amounts of endoglucanase II (EGII) with or without cellobiohydrolase I (CBHI). The endoglucanase activity produced by the EGII transformants correlated with the copy number of the egl2 expression cassette. One copy of the egl2 expression cassette in which the egl2 was under the cbh1 promoter increased production of endoglucanase activity 2.3-fold, and two copies increased production about 3-fold above that of the parent strain. When the enzyme with elevated EGII content was used, an improved stonewashing effect on denim fabric was achieved. A T. reesei strain producing high amounts of EGI and -II activities without CBHI and -II was constructed by replacing the cbh2 locus with the coding region of the egl2 gene in the EGI-overproducing CBHI-negative strain. Production of endoglucanase activity by the EG-transformant strain was increased fourfold above that of the host strain. The filter paper-degrading activity of the endoglucanase-overproducing strain was lowered to below detection, presumably because of the lack of cellobiohydrolases.  相似文献   

5.
For direct and efficient ethanol production from cellulosic materials, we constructed a novel cellulose-degrading yeast strain by genetically codisplaying two cellulolytic enzymes on the cell surface of Saccharomyces cerevisiae. By using a cell surface engineering system based on α-agglutinin, endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414 was displayed on the cell surface as a fusion protein containing an RGSHis6 (Arg-Gly-Ser-His6) peptide tag in the N-terminal region. EGII activity was detected in the cell pellet fraction but not in the culture supernatant. Localization of the RGSHis6-EGII-α-agglutinin fusion protein on the cell surface was confirmed by immunofluorescence microscopy. The yeast strain displaying EGII showed significantly elevated hydrolytic activity toward barley β-glucan, a linear polysaccharide composed of an average of 1,200 glucose residues. In a further step, EGII and β-glucosidase 1 from Aspergillus aculeatus No. F-50 were codisplayed on the cell surface. The resulting yeast cells could grow in synthetic medium containing β-glucan as the sole carbon source and could directly ferment 45 g of β-glucan per liter to produce 16.5 g of ethanol per liter within about 50 h. The yield in terms of grams of ethanol produced per gram of carbohydrate utilized was 0.48 g/g, which corresponds to 93.3% of the theoretical yield. This result indicates that efficient simultaneous saccharification and fermentation of cellulose to ethanol are carried out by a recombinant yeast cells displaying cellulolytic enzymes.  相似文献   

6.
酶法制备功能性纤维低聚糖的研究   总被引:1,自引:0,他引:1  
研究里氏木霉(Trichoderma reesei)Rut C30纤维素酶单一组分EGI、EGII和CBHI降解纤维素的机理及纤维低聚糖酶法制备技术,进而初步研究纤维低聚糖对青春双歧杆菌的增殖作用。以内切葡聚糖酶EGII酶法制备纤维低聚糖,每克纤维素最佳酶用量1 U,最佳酶解时间90 min,制备得到的纤维低聚糖中纤维二糖、纤维三糖和纤维四糖占总糖的比例分别为43.8%、34.8%和7.9%。以纤维二糖、纤维低聚糖为C源增殖青春双歧杆菌,菌体质量浓度增殖倍数分别为2.14、2.84。  相似文献   

7.
Degradation of cotton cellulose by Trichoderma reesei endoglucanase I (EGI) and cellobiohydrolase II (CBHII) was investigated by analyzing the insoluble cellulose fragments remaining after enzymatic hydrolysis. Changes in the molecular-size distribution of cellulose after attack by EGI, alone and in combination with CBHII, were determined by size exclusion chromatography of the tricarbanilate derivatives. Cotton cellulose incubated with EGI exhibited a single major peak, which with time shifted to progressively lower degrees of polymerization (DP; number of glucosyl residues per cellulose chain). In the later stages of degradation (8 days), this peak was eventually centered over a DP of 200 to 300 and was accompanied by a second peak (DP, (apprx=)15); a final weight loss of 34% was observed. Although CBHII solubilized approximately 40% of bacterial microcrystalline cellulose, the cellobiohydrolase did not depolymerize or significantly hydrolyze native cotton cellulose. Furthermore, molecular-size distributions of cellulose incubated with EGI together with CBHII did not differ from those attacked solely by EGI. However, a synergistic effect was observed in the reducing-sugar production by the cellulase mixture. From these results we conclude that EGI of T. reesei degrades cotton cellulose by selectively cleaving through the microfibrils at the amorphous sites, whereas CBHII releases soluble sugars from the EGI-degraded cotton cellulose and from the more crystalline bacterial microcrystalline cellulose.  相似文献   

8.
Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation.  相似文献   

9.
《Gene》1988,63(1):11-21
A novel endoglucanase from Trichoderma reesei, EGIII, has been purified and its catalytic properties have been studied. The gene for that enzyme (egl3) and cDNA have been cloned and sequenced. The deduced EGIII protein shows clear sequence homology to a Schizophyllum commune enzyme (M. Yaguchi, personal communication), but is very different from the three other T. reesei cellulases with known structure. Nevertheless, all the four T. reesei cellulases share two common, adjacent sequence domains, which apparently can be removed by proteolysis. These homologous sequences reside at the N termini of EGIII and the cellobiohydrolase CBHII, but at the C termini of EGI and CBHI. Comparison of the fungal cellulase structures has led to re-evaluation of hypotheses concerning the localization of the active sites.  相似文献   

10.
Summary Fast protein liquid chromatography (FPLC) was used to characterize a commercial cellulase preparation (Celluclast 1.5L, Novozymes) in relation to its protein profile and activity against hydroxyethylcellulose (HEC) and other substrates. Co-elution of CBHII (Cel 6A) with other enzyme components of the cellulase system was characterized by immunochemical assays using monoclonal antibodies, whereas the occurrence of EGII (Cel 5A) was assessed based on its ability to cleave the heterosidic bond of 4-methylumbellyferyl-β-d-cellotrioside (MUmbG3). The main cellulase constituents of Celluclast 1.5L were pooled into six fractions containing EGII (Cel 5A) and EGIII (Cel 12A) (F1), EGII and CBHII (Cel 6A) (F2), CBHII and EGI (Cel 7B) (F3), EGI (F4), and CBHI (Cel 7A) (F5). The occurrence of CBHI core protein within the CBHI fraction of the FPLC profile was determined by hydrophobic interaction chromatography. Using this method, we were able to demonstrate that the batch of Celluclast 1.5L used in this study contained 10.9–18.8% of CBHI as its corresponding free core protein.  相似文献   

11.
The hydrolysis of cellulose into fermentable sugars is a costly and rate-limiting step in the production of biofuels from renewable feedstocks. Developing new cellulase systems capable of increased cellulose hydrolysis rates would reduce biofuel production costs. With this in mind, we screened 55 fungal endoglucanases for their abilities to be expressed at high levels by Aspergillus niger and to hydrolyze amorphous cellulose at rates significantly greater than that obtained with TrCel5A, one of the major endoglucanases in the Trichoderma reesei cellulase system. This screen identified three endoglucanases, Aureobasidium pullulans ApCel5A, Gloeophyllum trabeum GtCel12A and Sporotrichum thermophile StCel5A. We determined that A. niger expressed the three endoglucanases at relatively high levels (≥0.3 g/l) and that the hydrolysis rate of ApCel5A and StCel5A with carboxymethylcellulose 4M as substrate was five and two times greater than the T. reesei Cel5A. The ApCel5A, GtCel12A and StCel5A enzymes also demonstrated significant synergy with Cel7A/CbhI, the major exoglucanase in the T. reesei cellulase system. The three endoglucanases characterized in this study are, therefore, promising candidate endoglucanases for developing new cellulase systems with increased rates of cellulose saccharification.  相似文献   

12.
For direct and efficient ethanol production from cellulosic materials, we screened optimal cellulases from symbiotic protists of termites through heterologous expression with Saccharomyces cerevisiae. 11 cellulases, belonging to glycoside hydrolase families 5, 7, and 45 endoglucanases (EGs), were confirmed to produce with S. cerevisiae for the first time. A recombinant yeast expressing SM2042B24 EG I was more efficient at degrading carboxylmethyl cellulose than was Trichoderma reesei EG I, a major EG with high cellulolytic activity.  相似文献   

13.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   

14.
Adsorption reversibility and competition between fractionated components of the Trichoderma reesei cellulase system were studied. Specific endoglucanase (EGI), nonspecific endoglucanases (EGII, EGIII), and cellobio-hydrolase (CBHI) were previously grouped according to their hydrolytic function. At 5 degrees C, direct evidence of exchange between adsorbed and free enzyme was obtained for each component using [(3)H] and [(14)C] radiolabeled tracers. No release of bound enzymes was detected upon dilution of the free enzyme solution. In simultaneous adsorption of enzyme pairs, CBHI was shown to predominate adsorption. Endoglucanase EGI was preferentially adsorbed over EGII and EGIII. Sequential adsorption studies have shown that interaction between enzyme components largely determines the degree of their adsorption. Evidence suggests that both common and distinct adsorption sites exist and that their occupation depends on which components are involved. Predominance in adsorption by any one of the enzyme components is decreased at 50 degrees C. Light microscopy and monitoring of sugar production during cellulose hydrolysis provided evidence that reduction in the ionic strength decreases the adsorption predominance of CBHI and enhances the synergism between the cellulase components.  相似文献   

15.
In this study, we expressed two cellulase encoding genes, an endoglucanase of Trichoderma reesei (EGI) and the beta-glucosidase of Saccharomycopsis fibuligera (BGL1), in combination in Saccharomyces cerevisiae. The resulting strain was able to grow on phosphoric acid swollen cellulose (PASC) through simultaneous production of sufficient extracellular endoglucanase and beta-glucosidase activity. Anaerobic growth (0.03h(-1)) up to 0.27gl(-1) DCW was observed on medium containing 10gl(-1) PASC as sole carbohydrate source with concomitant ethanol production of up to 1.0gl(-1). We have thus demonstrated the construction of a yeast strain capable of growth on and one-step conversion of amorphous cellulose to ethanol, representing significant progress towards realization of one-step processing of cellulosic biomass in a consolidated bioprocessing configuration. To our knowledge, this is the first report of a recombinant strain of S. cerevisiae growing on pure cellulose.  相似文献   

16.
The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsvaerd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably cellobiohydrolases (CBHs) and endo-1,4-beta-glucanases (EGs). Since the original T. reesei strain was isolated from decaying canvas, the T. reesei CBH and EG activities might be present in suboptimal ratios for hydrolysis of pretreated lignocellulosic substrates. We employed statistically designed combinations of the four main activities of Celluclast 1.5, CBHI, CBHII, EGI, and EGII, to identify the optimal glucose-releasing combination of these four enzymes to degrade barley straw substrates subjected to three different pretreatments. The data signified that EGII activity is not required for efficient lignocellulose hydrolysis when addition of this activity occurs at the expense of the remaining three activities. The optimal ratios of the remaining three enzymes were similar for the two pretreated barley samples that had been subjeced to different hot water pretreatments, but the relative levels of EGI and CBHII activities required in the enzyme mixture for optimal hydrolysis of the acid-impregnated, steam-exploded barley straw substrate were somewhat different from those required for the other two substrates. The optimal ratios of the cellulolytic activities in all cases differed from that of the cellulases secreted by T. reesei. Hence, the data indicate the feasibility of designing minimal enzyme mixtures for pretreated lignocellulosic biomass by careful combination of monocomponent enzymes. This strategy can promote both a more efficient enzymatic hydrolysis of (ligno)cellulose and a more rational utilization of enzymes.  相似文献   

17.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

18.
Most studies of cellulose hydrolysis have been carried out on three components of the cellulolytic systems, viz, endoglucanases, exoglucanases, and cellobiases. Little attention has been paid to the fragmentation activity of certain cellulolytic systems. We have noticed that despite being a more powerful degrader of modified cellulose (CMC), the 7-day grown culture filtrate of Myrothecium verrucaria was less effective than that of Trichoderma reesei at degrading pure unmodified cellulose. Scanning electron microscopy imaging showed that one distinguishing feature of the latter is its ability to fragment (macerate) the cellulose. Cellulose particle size decreased with time as it was incubated in the culture filtrate of T. reesei at 37 °C. This was used as a pre-treatment. Pre-treated cellulose was then washed and incubated with fresh T. reesei or M. verrucaria culture filtrates. Pre-treatment increased liberation of reducing sugars during subsequent incubation of cellulose in T. reesei culture filtrate but not in subsequent incubation in M. verrucaria culture filtrate. It was hypothesized that fragmentation activity of the pre-treatment opened up attack sites for further hydrolysis, but these were not available for attack by other enzyme systems.  相似文献   

19.
20.
We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号