首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His–Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.  相似文献   

2.
Multistep phosphorelay (MSP) signaling mediates responses to a variety of important stimuli in plants. In Arabidopsis MSP, the signal is transferred from sensor histidine kinase (HK) via histidine phosphotransfer proteins (AHP1–AHP5) to nuclear response regulators. In contrast to ancestral two‐component signaling in bacteria, protein interactions in plant MSP are supposed to be rather nonspecific. Here, we show that the C‐terminal receiver domain of HK CKI1 (CKI1RD) is responsible for the recognition of CKI1 downstream signaling partners, and specifically interacts with AHP2, AHP3 and AHP5 with different affinities. We studied the effects of Mg2+, the co‐factor necessary for signal transduction via MSP, and phosphorylation‐mimicking BeF3? on CKI1RD in solution, and determined the crystal structure of free CKI1RD and CKI1RD in a complex with Mg2+. We found that the structure of CKI1RD shares similarities with the only known structure of plant HK, ETR1RD, with the main differences being in loop L3. Magnesium binding induces the rearrangement of some residues around the active site of CKI1RD, as was determined by both X‐ray crystallography and NMR spectroscopy. Collectively, these results provide initial insights into the nature of molecular mechanisms determining the specificity of MSP signaling and MSP catalysis in plants.  相似文献   

3.
Adaptation to an environmental stress is essential for cell survival in all organisms, from E. coli to human. To respond to changes in their surroundings, bacteria utilize two-component systems (TCSs), also known as histidyl-aspartyl phosphorelay (HAP) systems that consist of a histidine kinase (HK) sensor and a cognate response regulator (RR). While mammals developed complex signaling systems involving serine/threonine/tyrosine kinases in stress response mechanisms, bacterial TCS/HAP systems represent a simple but elegant prototype of signal transduction machineries. HKs are known as a seductive target for anti-bacterial therapeutic development, because of their significance in pathological virulence in some bacteria such as Salmonella enterica. Recent molecular and structural studies have shed light on the molecular basis of the signaling mechanism of HK sensor kinases. This review will focus on recent advancements in structural investigation of signal sensing and transducing mechanisms by HKs, which is critical to our understanding of bacterial biology and pathology.  相似文献   

4.
5.
Histidine-to-aspartate (His-Asp) phosphorelay (or two-component) systems are very common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli. The His-Asp phosphorelay components include "sensor histidine kinase (HK)", "phosphotransfer intermediate (HPt)", and "response regulator (RR)". With special reference to three bacterial species (Mesorhizobium loti, Bradyrhizobium japonicum, Sinorhizobium meliloti), each of which belongs to a different genera of Rhizobia, here we attempted to compile all of the His-Asp phosphorelay components in order to reveal a comparative genome-wide overview as to the His-Asp phosphorelay. It was revealed that M. loti has 47 HKs, 1 HPts, and 58 RRs; B. japonicum has 80 HKs, 3 HPts, and 91 RRs; whereas S. meliloti has 40 HKs, 1 HPt, and 58 RRs. These His-Asp phosphorelay components were extensively compiled and characterized. The resulting overview as to the His-Asp phosphorelay of Rhizobia will provide us with a basis for understanding of the fundamental mechanisms underlying interactions between plants and microorganisms (including symbiosis), as well as nitrogen fixation.  相似文献   

6.
The evolutionarily-conserved histidine to aspartate (His-to-Asp) phosphorelay signal transduction is common in both prokaryotes and eukaryotes. Such a phosphorelay system is generally made up of ‘a histidine (His)-kinase’, ‘a histidine-containing phosphotransmitter (HPt)’, and ‘a phospho-accepting response regulator (RR)’. In general, an HPt factor acts as an intermediate in a given multistep His-to-Asp phosphorelay. In Arabidopsis thaliana, this model higher plant has five genes (named AHP1 to AHP5), each of which seems to encode an HPt factor. Recent studies suggested that the His-to-Asp phosphorelay involving the AHP factors is at least partly implicated in signal transduction in response to cytokinin (a plant hormone). Nevertheless, the properties of AHPs have not yet been fully clarified. Here we did comparative studies of all the AHP factors, in terms of (i) expression profiles in plants, (ii) intracellular localization, (iii) ability to acquire a phosphoryl group in vitro, and (iv) ability to interact with the downstream components, ARRs (Arabidopsis response regulators). The results of this study provided us with a comprehensive view at the molecular level for understanding the functions of the AHP phosphotransmitters in the His-to-Asp phosphorelay.  相似文献   

7.
Choi K  Kim S 《Proteins》2011,79(4):1118-1131
The two‐component system (TCS) is a signal transduction system that involves a histidine kinase (HK) and a response regulator (RR). Although up to hundreds of TCSs may operate in parallel in a bacterial cell, the high‐fidelity of a TCS signaling is well maintained, minimizing irrelevant crosstalk between TCSs. When a HK gene and a RR gene in a given TCS system exist in neighboring positions, it is almost certain that their protein products (i.e., HK and RR) are interacting partners. However, large bacterial genomes often have multiple HK genes and/or cognate RR genes that are not neighboring positions. In many partially assembled genomes, some HK genes and RR genes belong to different contigs. In these cases, it is not clear which HK(s) and RR(s) interact. By combining information‐theoretic and graph‐theoretic approaches, we developed a computational method identifying co‐evolving residue pairs between HKs and cognate RRs and predicting the interacting HK:RR pairs for each TCS. In addition, we built a TCSppWWW webserver ( http://compath.org/platcom/tcs ) that takes query sequences of pairing candidates and predicts their HK:RR pairing using precomputed models. The current release of TCSppWWW provides predictors for 48 TCSs using over 20,000 protein sequences from about 900 bacterial genomes. Three different types of predictors using Random Forest, RBF Network, and Naïve Bayes are provided. Once a set of HK and RR candidate sequences are submitted, TCSppWWW aligns query sequences to the precomputed multiple sequence alignment of HK:RR pairs, extracts co‐evolving column positions, then returns prediction results with prediction margin and additional information. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.  相似文献   

9.
Two-component signaling systems (TCSs) are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK) to a cytoplasmic response regulator (RR) that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS). HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host.  相似文献   

10.
Histidine-to-Aspartate (His-Asp) phosphorelay (or two-component) systems are common signal transduction mechanisms implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes. For a model filamentous fungi, Aspergillus nidulans, in this study we first compiled a complete list of His-Asp phosphorelay components, including 15 genes for His-kinase (HK), four genes for response regulator (RR), and only one for histidine-containing phosphotransfer intermediate (HPt). For these RR genes, a set of deletion mutants was constructed so as to create a null allele for each. When examined these mutant strains under various conditions stressful for hyphal growth and asexual spore development, two of them (designated DeltasskA and DeltasrrA) showed a marked phenotype of hypersensitivity to oxidative stresses (particularly, to hydrogen peroxide). In this respect, expression of the vegetative-stage specific catB catalase gene was severely impaired in both mutants. Furthermore, conidia from DeltasskA were hypersensitive not only to treatment with H(2)O(2), but also to treatment at aberrantly low (4 degrees C) and high (50 degrees C) temperatures, resulting in reduced germination efficiency. In this respect, not only the catA catalase gene specific for asexual development, but also a set of genes encoding the enzymes for synthesis of certain stress tolerant compatible solutes, such as trehalose and glycerol, were markedly downregulated in conidia from DeltasskA. These results together are indicative of the physiological importance of the His-Asp phosphorelay signaling network involving the SskA and SrrA response regulators.  相似文献   

11.
Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK–RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the broadly occurring HisKA family of sensor kinases in bacteria.  相似文献   

12.
His-Asp phosphorelays are signal transduction mechanisms widely found in both prokaryotes and eukaryotes. The phosphorelay comprises three types of signal transducers: a sensor with histidine kinase (HK), a response regulator containing a phospho-accepting receiver (RR), and a histidine-containing phosphotransmitter (HPt). In this study, we examined HK expression using a green fluorescent protein (GFP) reporter driven by HK promoters in Aspergillus nidulans. All the transformants showed fluorescence derived from GFP in a submerged culture, although some of them were very weak, indicating that all the promoters were active. As judged by the fluorescence of transformants grown on a culture plate on which sexual development was induced, promoters of fphA, hk-8-2, and hk-8-5 preferentially functioned in conidial heads, the promoter of phkA preferentially functioned in cleistothecia, and the promoters of tcsB and nikA function in both conidial heads and cleistothecia. These results indicate that at least some HKs of A. nidulans showed temporally and spatially different expression during the cell cycle.  相似文献   

13.
Genes for histidyl-aspartyl (His-Asp) phosphorelay components (His-containing phosphotransfer proteins, HP, and response regulators, RR) were isolated from Zea mays L. to characterize their function in cytokinin signaling. Six type-A RRs (ZmRR1, ZmRR2, ZmRR4–ZmRR7), 3 type-B RRs (ZmRR8–ZmRR10), and 3 HPs (ZmHP1–ZmHP3) were found in leaves. All type-A RR genes expressed in leaves were up-regulated by exogenous cytokinin. Transient expression of fusion products of the signaling modules with green fluorescent protein in epidermal leaf cells suggested cytosolic and nuclear localizations of ZmHPs, whereas type-B ZmRR8 was restricted to the nucleus. Type-A RRs were localized partly to the cytosol (ZmRR1, ZmRR2, and ZmRR3) and partly to the nucleus (ZmRR4, ZmRR5, and ZmRR6). In the yeast two-hybrid assay, ZmHP1 and ZmHP3 interacted with both cytosolic ZmRR1 and nuclear type-B ZmRRs. In vitro experiments demonstrated that ZmHPs function as a phospho-donor for ZmRRs; turnover rates of the phosphorylated state were tenfold lower in ZmRR8 and ZmRR9 than in ZmRR1 and ZmRR4. These results suggest that the His-Asp phosphorelay signaling pathway might diverge into a cytosolic and a nuclear branch in leaves of maize, and that the biochemical nature of ZmRRs is different in terms of stability of the phosphorylated status.  相似文献   

14.
Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems.  相似文献   

15.
Histidine (His)-to-Aspartate (Asp) phosphorelay signal transduction systems are generally made up of a “sensor histidine (His)-kinase”, a “response regulator”, and a “histidine-containing phosphotransmitter (HPt)”. In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that the His-to-Asp phosphorelay mechanism is at least partly responsible for propagation of environmental stimuli, such as phytohormones (e.g. ethylene and cytokinin). Here we compiled the members of the HPt family of phosphotransmitters in Arabidopsis thaliana (AHP- series, Arabidopsis HPt phosphotransmitters), based on both database and experimental analyses, in order to provide a comprehensive basis at the molecular level for understanding the function of the AHP phosphotransmitters that are implicated in the His-to-Asp phosphorelay of higher plants.  相似文献   

16.
17.
Lactobacillus casei has traditionally been recognized as a probiotic, thus needing to survive the industrial production processes and transit through the gastrointestinal tract before providing benefit to human health. The two-component signal transduction system (TCS) plays important roles in sensing and reacting to environmental changes, which consists of a histidine kinase (HK) and a response regulator (RR). In this study we identified HKs and RRs of six sequenced L. casei strains. Ortholog analysis revealed 15 TCS clusters (HK–RR pairs), one orphan HKs and three orphan RRs, of which 12 TCS clusters were common to all six strains, three were absent in one strain. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. Some TCS clusters are involved with the response under the stress of the bile salts, acid, or oxidative, which contribute to survive the difficult journey through the human gastrointestinal tract. Computational predictions of 15 TCSs were verified by PCR experiments. This genomic level study of TCSs should provide valuable insights into the conservation and divergence of TCS proteins in the L. casei strains.  相似文献   

18.
19.
His-Asp phosphorelay systems have been recently discovered in plants and have emerged as some of the most important signaling systems. The phosphorelay systems in plants include components with sensor (His-protein kinase) domains, His-containing phosphotransfer (HPt) domains, and receiver (response regulator) domains. Recent studies implicate phosphorelay systems in sensing and propagating signals from a wide variety of external and/or internal stimuli such as ethylene, cytokinin, and osmolarity. In maize and Arabidopsis, some response regulators are up-regulated by both cytokinins and nitrate. These findings imply that the His-Asp phosphorelay may operate in an inorganic nitrogen-signaling pathway mediated by cytokinin in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号