共查询到20条相似文献,搜索用时 15 毫秒
1.
Hee-Kyoung Kang Eun-Ah Ko Jong-Ho Kim Doman Kim 《Bioprocess and biosystems engineering》2013,36(6):857-865
The open reading frame of dsrE563, a dextransucrase gene obtained from a constitutive mutant (CB4-BF563) of Leuconostoc mesenteroides B-1299, consists of 8,511 bp encoding 2,836 amino acid residues. DsrE563 contains two catalytic domains (CD1 and CD2). Two truncated derivative mutants DsrE563ΔCD2ΔGBD (DsrE563-1) and DsrE563ΔCD2ΔVR (DsrE563-2) of DsrE563 were constructed and expressed using the pRSETC vector in Escherichia coli. The derivatives DsrE563-1 (deletion of 1,620 amino acids from the C-terminus) and DsrE563-2 (deletion of 1,258 amino acids from the C-terminus and 349 amino acids from the N-terminus) were expressed as active enzymes. Both enzymes synthesized less-soluble dextran, mainly containing α-1,6 glucosidic linkage. The synthesized less-soluble dextran also had a branched α-1,3 linkage. DsrE563-2 showed 4.5-fold higher dextransucrase activity than that of DsrE563-1 and showed higher acceptor reaction efficiency than that of dextransucrase from L. mesenteroides 512 FMCM when various mono or disaccharides were used as acceptors. Thus, the glucan-binding domain was important for both enzyme expression and dextransucrase activity. 相似文献
2.
Moon YH Nam SH Kang J Kim YM Lee JH Kang HK Breton V Jun WJ Park KD Kimura A Kim D 《Applied microbiology and biotechnology》2007,77(3):559-567
Two arbutin glucosides were synthesized via the acceptor reaction of a glucansucrase from Leuconostoc mesenteroides B-1299CB with arbutin and sucrose. The glucosides were purified by Bio-gel P-2 column chromatography and high-performance
liquid chromatography, and the structures were elucidated as 4-hydroxyphenyl β-isomaltoside (arbutin-G1), 4-hydroxyphenyl
β-isomaltotrioside (arbutin-G2), according to the results of 1H, 13C, heteronuclear single-quantum coherence, 1H-1H COSY, and heteronuclear multiple-bond correlation analyses. Arbutin glucoside (4-hydroxyphenyl β-isomaltoside) exhibited
slower effects on 1,1-diphenyl-2-picrylhydrazyl radical scavenging and similar effects on tyrosinase inhibition, and increased
inhibitory effect on matrix metalloproteinase-1 production induced by UVB than arbutin.
Young Hwan Moon and Seung Hee Nam contributed equally to this work. 相似文献
3.
de Segura AG Alcalde M Bernabé M Ballesteros A Plou FJ 《Journal of biotechnology》2006,124(2):439-445
The synthesis of methyl alpha-D-glucooligosaccharides, using sucrose as glucosyl donor and methyl alpha-D-glucopyranoside as acceptor, was studied with dextransucrase from Leuconostoc mesenteroides NRRL B-1299. The enzyme was immobilized by entrapment in alginate. By NMR and mass spectrometry we identified three homologous series (S1-S3) of methyl alpha-D-glucooligosaccharides. Series S2 and S3 were characterized by the presence of alpha(1-->2) linkages, in combination with alpha(1-->6) bonds. Two parameters, sucrose to acceptor concentration ratio (S/A) and the total sugar concentration (TSC) determined the yield of methyl alpha-D-glucooligosaccharides. The maximum concentration achieved of the first acceptor product, methyl alpha-D-isomaltoside, was 65 mM using a S/A 1:4 and a TSC of 336 g l(-1). When increasing temperature, a shift of selectivity towards compounds containing alpha(1-->2) bonds was observed. The formation of leucrose as a side process was very significant (reaching values of 32 g l(-1)) at high sucrose concentrations. 相似文献
4.
5.
Dextransucrase [EC 2.4.1.5] activity from cell-free culture supernatant of Leuconostoc mesenteroides NRRL B-1299 was purified by (NH4)2SO4 fractionation, adsorption on hydroxyapatite, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The extracellular enzyme was separated into two principal forms, enzymes I and N, and the latter was shown to be an aggregated form of the protomer, enzyme I. Enzymes I and N were both electrophoretically homogeneous and their relative activities reached 820 and 647 times that of the culture supernatant, respectively. On sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, enzyme N dissociated into the protomer enzyme I, with a molecular weight of 48,000. Enzyme I was gradually converted into enzyme N upon aging, and this conversion was stimulated in the presence of NaCl. The optimum pH and temperature of enzyme I activity were pH 6.0 and 40 degrees, respectively, while those of enzyme N were pH 5.5 and 35 degrees. The Km values of enzymes I and N were 13.9 and 13.1 mM, respectively. Ca2+, Mg2+, Fe2+, and Co2+ stimulated the activity of enzyme N, and EDTA showed a potent inhibitory effect on this enzyme. Moreover, the activity of enzyme N was more effectively stimulated by exogenous dextrans as compared with enzyme I. 相似文献
6.
A gene encoding a dextransucrase (dsrBCB4) that synthesizes only alpha-1,6-linked dextran was cloned from Leuconostoc mesenteroides B-1299CB4. The coding region consisted of an open reading frame (ORF) of 4,395 bp that coded a 1,465-amino-acids protein with a molecular mass 163,581 Da. The expressed recombinant DSRBCB4 (rDSRBCB4) synthesized oligosaccharides in the presence maltose or isomaltose as an acceptor, plus the products included alpha-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. Alignments of the amino acid sequence of DSRBCB4 with glucansucrases from Streptococcus and Leuconostoc identified conserved amino acid residues in the catalytic core that are critical for enzyme activity. The mutants D530N, E568Q, and D641N displayed a 98- to 10,000-fold reduction of total enzyme activity. 相似文献
7.
For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst. The conversion rates, obtained with this enzyme at sucrose to acceptor molar ratio of 2:1 reached 81 and 61% for alpha-butylglucopyranoside and alpha-octylglucopyranoside, respectively. Analyses obtained from liquid chromatography coupled with mass spectrometry revealed that different series of alpha-alkylpolyglucopyranosides regioisomers of increasing polymerization degree can be formed depending on the specificity of the catalyst. 相似文献
8.
Kim GE Kang HK Seo ES Jung SH Park JS Kim DH Kim DW Ahn SA Sunwoo C Kim D 《Enzyme and microbial technology》2012,50(1):50-56
Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2-8). The astragalin glucosides exhibited 8.3-60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8-20.3% increased antioxidant effects, and 3.8-18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry. 相似文献
9.
The extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-640 was purified using polyethylene glycol fractionation (PEG) and gel-filtration. The cell free extract was subjected to fractionation by PEG-200, 400 and 1500. The 10% (w/v) PEG-1500 gave dextransucrase with maximum specific activity of 23 with 40 fold purification in a single step. The purified enzyme showed multiple molecular forms on SDS-PAGE, however the same sample showed a single band on non-denaturing native-PAGE. The purified dextransucrase fractions obtained from PEG-1500, confirmed the presence of dextran, when run on SDS-PAGE under non-denaturing gels for in situ activity detection by Periodic Acid Schiff's staining. The activity bands corresponded to the native and active form of the purified dextransucrase of approximately, 180kDa molecular size, that appeared on the denaturing gels stained with Coomassie Brilliant Blue. No bands appeared after staining the activity of dextransucrase on non denaturing SDS-PAGE gels with raffinose, which excluded the presence of fructosyltransferases. Further purification of 10% PEG-1500 purified dextransucrase by gel-filtration gave dextransucrase with specific activity of 35 with 61 fold purification. 相似文献
10.
Leuconostoc mesenteroides NRRL B-1426 dextransucrase synthesized a high molecular mass dextran (>2 × 106 Da) with ~85.5% α-(1→6) linear and ~14.5% α-(1→3) branched linkages. This high molecular mass dextran containing branched α-(1→3) linkages can be readily hydrolyzed for the production of enzyme-resistant isomalto-oligosaccharides. The acceptor specificity of dextransucrase for the transglycosylation reaction was studied using sixteen different acceptors. Among the sixteen acceptors used, isomaltose was found to be the best, having 89% efficiency followed by gentiobiose (64%), glucose (30%), cellobiose (25%), lactose (22.5%), melibiose (17%), and trehalose (2.3%) with reference to maltose, a known best acceptor. The β-linked disaccharide, gentiobiose, showed significant efficiency for oligosaccharide production that can be used as a potential prebiotic. 相似文献
11.
Production,purification, and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F
The production of dextransucrase fromLeuconostoc mesenteroides NRRL B-512F was stimulated 2-fold by the addition of 0.005% of calcium chloride to the medium; levansucrase levels were unaffected. Dextransucrase was purified by concentration and dialysis of the culture supernatant with a Bio-Fiber 80 miniplant, and by treatment with dextranase followed by chromatography on Bio-Gel A-5m. A 240-fold purification, with a specific activity of 53 U/mg, was obtained. Contaminating enzyme activities of levansucrase, invertase, dextranase, glucosidase, and sucrose phosphorylase were decreased to non-detectable levels. Poly(acrylamide)-gel electrophoresis of the purified enzyme showed only two protein bands, both of which had dextransucrase activity. These bands also gave a carbohydrate stain, indicating that the dextransucrase could be a glycoprotein. Acid hydrolysis, followed by paper chromatography, of the purified enzyme showed that the major carbohydrate was mannose. ConcanavaIin A completely removed dextransucrase activity from solution, confirming the mannoglycoprotein character of the enzyme. Dextransucrase activity was not altered by the addition of 0.008?4 mg/ml of dextran, but its storage stability was increased by the addition of 4 mg/ml of dextran. As previously shown by others, the activity of dextransucrase was decreased by EDTA, and was restored by the addition of calcium ions. Zinc, cadmium, lead, mercury, and copper ions were inhibitory to various degrees. 相似文献
12.
Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F 总被引:2,自引:0,他引:2
A sequence of dextranase treatment, DEAE-cellulose chromatography, affinity chromatography on Sephadex G-200, and chromatography on DEAE-Trisacryl M has been optimized to give a dextransucrase preparation with low carbohydrate content (1-100 micrograms/mg protein) and high specific activity (90-170 U/mg protein) relative to previous procedures, in 30-50% yield. Levansucrase was absent after DEAE-cellulose chromatography, and dextranase was undetectable after Sephadex G-200 chromatography. The method could be scaled up to produce gram quantities of purified enzyme. The purified dextransucrase had a pH optimum of 5.0-5.5, a Km of 12-16 mM, and produced the same lightly branched dextran as before purification. The purified enzyme was not activated by added dextran, but the rate of dextran synthesis increased abruptly during dextran synthesis at a dextran concentration of approximately 0.1 mg/mL. The enzyme had two major forms, of molecular weight 177,000 and 158,000. The 177,000 form predominated in fresh preparations of culture supernatant or purified enzyme, whereas the amount of the 158,000 form increased at the expense of the 177,000 form during storage of either preparation. 相似文献
13.
Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523 总被引:1,自引:0,他引:1
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis. 相似文献
14.
Mikihiko Kobayashi Ken-ichi Shishido Tohru Kikuchi Kazuo Matsuda 《Bioscience, biotechnology, and biochemistry》2013,77(12):2763-2769
Methylation analysis of five fractions of the dextran elaborated by Leuconostoc mesenteroides NRRL B-1299 has shown that each fraction was a highly branched dextran with the branches being joined mainly through C-2. Detection of a small amount of 4-O-mono-methyl-d-glucose has suggested that parts of the d-glucose residues were doubly branched at both C-2 and C-3. Detection of a larger amount of 2,4,6-tri-O-methyl-d-glucose in the hydrolyzates of the methylated products of the borate insoluble fractions has shown a greater percentage of linear α-1,3-linked d-glucose residues in these fractions. It is suggested that the solubility of the dextran is closely related to the content of linear α-1,3-linked d-glucose residues. 相似文献
15.
Conversion of the Extracellular Dextransucrase Isoenzymes from Leuconostoc mesenteroides NRRL B-1299
Effect of oxygen tension on l-lysine, l-threonine and l-isoleucine accumulation was investigated. Sufficient supply of oxygen to satisfy the cell’s oxygen demand was essential for the maximum production in each fermentation. The dissolved oxygen level must be controlled at greater than 0.01 atm in every fermentation, and the optimum redox potentials of culture media were above ?170 mV in l-lysine and l-threonine and above ?180 mV in l-isoleucine fermentations. The maximum concentrations of the products were 45.5 mg/ml for l-lysine, 10.3 mg/ml for l-threonine and 15.1 mg/ml for l-isoleucine. The degree of the inhibition due to oxygen limitation was slight in the fermentative production of l-lysine, l-threonine and l-isoleucine, whose biosynthesis is initiated with l-aspartic acid, in contrast to the accumulation of l-proline, l-glutamine and l-arginine, which is biosynthesized by way of l-glutamic acid. 相似文献
16.
Four major dextransucrase (EC 2.4.1.5) preparations from Leuconostoc mesenteroides were studied in relation to their reaction products. The extracellular enzyme II, a highly aggregated form of enzyme I, synthesized the largest amount of dextran per 1 unit of enzyme. Moreover, this dextran emerged at the void volume by Sepharose 6B chromatography. Dextran produced by the enzyme I was composed almost exclusively of water-soluble form having a molecular weight (MW) smaller than that of the product with enzyme II. Although soluble dextran produced by the intracellular enzyme (enzyme III or IV) had a low MW, ratio of insoluble dextran to total dextran was higher than that of the products with extracellular enzyme. Dextran produced by the enzyme II contained a large amount of non-α-l,6-linkages whereas dextran produced by the enzyme I was rich in linear α-l,6-linked structure. The structural analyses of various dextrans showed that each enzyme seemed to be responsible for the synthesis of both α-1,6 and non-α-l,6-linkages. Difference in the amounts and structures of dextrans suggests that the extracellular enzymes may play a major role for the dextran synthesis in vivo. 相似文献
17.
Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. 总被引:1,自引:0,他引:1 下载免费PDF全文
The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized. 相似文献
18.
Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports 总被引:2,自引:0,他引:2
Gómez de Segura A Alcalde M Yates M Rojas-Cervantes ML López-Cortés N Ballesteros A Plou FJ 《Biotechnology progress》2004,20(5):1414-1420
Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors. 相似文献
19.
Hwa-Ja Ryu Doman Kim Do-Won Kim You-Youn Moon John F. Robyt 《Biotechnology letters》2000,22(5):421-425
Dextransucrase (FMCMDS) from Leuconostoc mesenteroides B-512FMCM, a dextransucrase constitutive and hyper-producing strain, catalyzes the synthesis of dextran from sucrose. The coding region for fmcmds was isolated and sequenced. It consisted of an open reading frame (ORF) of 4699 bp, coding for a 1527 amino acid protein with a molecular mass of 170 kDa. However, it showed a dextransucrase activity band at 180 kDa in SDS-PAGE. Only one nucleotide changed in the promoter site and two amino acid residues were changed in the structural gene from that of the parent L. mesenteroides NRRL B-512F dsrS; an inducible dextransucrase gene of low productivity. 相似文献
20.
Lee MS Cho SK Eom HJ Kim SY Kim TJ Han NS 《Journal of microbiology and biotechnology》2008,18(6):1141-1145
Isomaltooligosaccharide (IMO) is a promising dietary component with prebiotic effect, and the long-chain IMOs are preferred to short chain ones owing to the longer persistence in the colon. To establish the optimal process for synthesis of long-chain IMOs, we systematically examined the reaction condition of dextransucrase of Leuconostoc mesenteroides B-512F by changing the ratio of sucrose to maltose (varying as 1:4, 1:2, 1:1, and 2:1) and amount of each sugar (from 2% to 20%). As a result, a ratio of 2:1 (sucrose to maltose, 10:5% or 20:10%, w/v) was determined as an optimal condition for long-chain IMO synthesis (DP3-DP9) with relatively higher yields (70-90%, respectively). 相似文献