首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular Ca2 + levels are tightly regulated in the neuronal system. The loss of Ca2 + homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca2 + signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3 μM ATP caused an early Ca2 + release followed by a delayed Ca2 + release. The delayed Ca2 + release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca2 + release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca2 + release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca2 + release phenomenon. siRNA targeting of calcyon blocked the delayed Ca2 + release, decreased ATP-evoked IP3R-mediated Ca2 + release, and impaired subsequent Ca2 + oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca2 + release in PC-12 cells. In schizophrenia, Ca2 + dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca2 + levels as well as dopamine signaling.  相似文献   

2.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

4.
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1 μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.  相似文献   

5.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

6.
The Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca2+ signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca2+ signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca2+ release (but not cADPR- or IP3-evoked Ca2+ release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen ‘hits’ exhibiting >80% inhibition of NAADP-evoked Ca2+ release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca2+ release without depleting acidic Ca2+ stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca2+ signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP3-dependent Ca2+ signaling with potential therapeutic value.  相似文献   

7.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

8.
In addition to its well established function in activating Ca2+ release from the endoplasmic reticulum (ER) through ryanodine receptors (RyR), the second messenger cyclic ADP-ribose (cADPR) also accelerates the activity of SERCA pumps, which sequester Ca2+ into the ER. Here, we demonstrate a potential physiological role for cADPR in modulating cellular Ca2+ signals via changes in ER Ca2+ store content, by imaging Ca2+ liberation through inositol trisphosphate receptors (IP3R) in Xenopus oocytes, which lack RyR. Oocytes were injected with the non-metabolizable analog 3-deaza-cADPR, and cytosolic [Ca2+] was transiently elevated by applying voltage-clamp pulses to induce Ca2+ influx through expressed plasmalemmal nicotinic channels. We observed a subsequent potentiation of global Ca2+ signals evoked by strong photorelease of IP3, and increased numbers of local Ca2+ puffs evoked by weaker photorelease. These effects were not evident with cADPR alone or following cytosolic Ca2+ elevation alone, indicating that they did not arise through direct actions of cADPR or Ca2+ on the IP3R, but likely resulted from enhanced ER store filling. Moreover, the appearance of a new population of puffs with longer latencies, prolonged durations, and attenuated amplitudes suggests that luminal ER Ca2+ may modulate IP3R function, in addition to simply determining the size of the available store and the electrochemical driving force for release.  相似文献   

9.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

10.
The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.  相似文献   

11.
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2 ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.  相似文献   

12.
Liberation of Ca2+ from the endoplasmic reticulum (ER) through inositol trisphosphate receptors (IP3R) is modulated by the ER Ca2+ content, and overexpression of SERCA2b to accelerate Ca2+ sequestration into the ER has been shown to potentiate the frequency and amplitude of IP3-evoked Ca2+ waves in Xenopus oocytes. Here, we examined the effects of SERCA overexpression on the elementary IP3-evoked puffs to elucidate whether ER [Ca2+] may modulate IP3R function via luminal regulatory sites in addition to simply determining the size of the available store and electrochemical driving force for Ca2+ release. SERCA2b and Ca2+ permeable nicotinic plasmalemmal channels were expressed in oocytes, and hyperpolarizing pulses were delivered to induce Ca2+ influx and thereby load ER stores. Puffs evoked by photoreleased IP3 were significantly potentiated in terms of numbers of responding sites, frequency and amplitude following transient Ca2+ influx in SERCA-overexpressing cells, whereas little change was evident with SERCA overexpression alone or following Ca2+ influx in control cells not overexpressing SERCA. Intriguingly, we observed the appearance of a new population of puffs that arose after long latencies and had prolonged durations supporting the notion of luminal regulation of IP3R gating kinetics.  相似文献   

13.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

14.
15.
《Cell calcium》2011,49(6):324-332
Multiple mechanisms that maintain Ca2+ homeostasis and provide for Ca2+ signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca2+ clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca2+ homeostatic molecules on cytosolic Ca2+ ([Ca2+]i) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca2+]i dynamics. When bathing the cells in a Na+-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca2+-ATPase (PMCA), La3+, all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca2+]i transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca2+ transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca2+ homeostatic pathways, the Na+/Ca2+ exchanger, the endoplasmic reticulum Ca2+ pump, the plasmalemmal Ca2+ pump and mitochondria, are complementary in actively clearing Ca2+ from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca2+]i dynamics; (iii) there is (are) Ca2+ clearance mechanism(s) distinct from the four outlined above; and (iv) Ca2+ homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

16.
Calcium ions (Ca2+) released from inositol trisphosphate (IP3)-sensitive intracellular stores may participate in both the transient and extended regulation of neuronal excitability in neocortical and hippocampal pyramidal neurons. IP3 receptor (IP3R) antagonists represent an important tool for dissociating these consequences of IP3 generation and IP3R-dependent internal Ca2+ release from the effects of other, concurrently stimulated second messenger signaling cascades and Ca2+ sources. In this study, we have described the actions of the IP3R and store-operated Ca2+ channel antagonist, 2-aminoethoxydiphenyl-borate (2-APB), on internal Ca2+ release and plasma membrane excitability in neocortical and hippocampal pyramidal neurons. Specifically, we found that a dose of 2-APB (100 μM) sufficient for attenuating or blocking IP3-mediated internal Ca2+ release also raised pyramidal neuron excitability. The 2-APB-dependent increase in excitability reversed upon washout and was characterized by an increase in input resistance, a decrease in the delay to action potential onset, an increase in the width of action potentials, a decrease in the magnitude of afterhyperpolarizations (AHPs), and an increase in the magnitude of post-spike afterdepolarizations (ADPs). From these observations, we conclude that 2-APB potently and reversibly increases neuronal excitability, likely via the inhibition of voltage- and Ca2+-dependent potassium (K+) conductances.  相似文献   

17.
Nucleotides play an important role in brain development and may exert their action via ligand-gated cationic channels or G protein-coupled receptors. Patch-clamp measurements indicated that in contrast to AMPA, ATP did not induce membrane currents in human midbrain derived neuronal progenitor cells (hmNPCs). Various nucleotide agonists concentration-dependently increased [Ca2+]i as measured by the Fura-2 method, with the rank order of potency ATP > ADP > UTP > UDP. A Ca2+-free external medium moderately decreased, whereas a depletion of the intracellular Ca2+ storage sites by cyclopiazonic acid markedly depressed the [Ca2+]i transients induced by either ATP or UTP. Further, the P2Y1 receptor antagonistic PPADS and MRS 2179, as well as the nucleotide catalyzing enzyme apyrase, allmost abolished the effects of these two nucleotides. However, the P2Y1,2,12 antagonistic suramin only slightly blocked the action of ATP, but strongly inhibited that of UTP. In agreement with this finding, UTP evoked the release of ATP from hmNPCs in a suramin-, but not PPADS-sensitive manner. Immunocytochemistry indicated the co-localization of P2Y1,2,4-immunoreactivities (IR) with nestin-IR at these cells. In conclusion, UTP may induce the release of ATP from hmNPCs via P2Y2 receptor-activation and thereby causes [Ca2+]i transients by stimulating a P2Y1-like receptor.  相似文献   

18.
We demonstrate that F281, a synthetic agonist of the sigma-2 receptor (s2R), induces a non transient increase in intracellular [Ca2+] ([Ca2+]i) and cell death in SK-N-SH cells. Sigma receptors are classified into two subtypes, with different molecular weight and tissue distribution. While the sigma-1 receptor has been cloned, the s2r is less characterized and its physiological ligand and role need further investigation. In tumour cell lines, synthetic agonists of the s2R trigger apoptosis and modulate [Ca2+]i. In particular, CB-64D induces a Ca2+ response while PB28 supresses Ca2+ signalling. We have recently synthesized F281, by replacing the 5-methoxytetraline moiety of PB28 with a carbazole nucleus. Although this bioisosteric substitution should not affect the ligand affinity at the receptor, F281 (after 24 h incubation) was more cytotoxic than PB28 (EC50 values 65.4 nM and 8.13 μM, respectively) in SK-N-SH cells. We used the fluorescent probes fura-2, rhod-2 and JC-1. F281 mobilizes Ca2+ from mitochondria and from the endoplasmic reticulum, by opening its inositol 1,4,5-trisphosphate receptor; Ca2+-entry through the channels activated by store depletion was also observed. After the increase in [Ca2+]i and within 10 min, we observed a sudden drop in metabolic activity and intracellular [ATP] leading to cell death.  相似文献   

19.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to be a powerful Ca2+ release agent in numerous systems, including echinoderms, plants, and mammalian cells. NAADP has been shown to release Ca2+ via a separate mechanism to IP3 and ryanodine receptors, and specific binding sites have recently been characterised. However, functional studies have shown that there is a functional interplay between the NAADP-sensitive mechanism and the other two. In particular, it appears that activation of the NAADP receptor might act as a trigger to facilitate responses from IP3 and ryanodine receptors. To further characterise this interplay, we have investigated the effects of luminal and cytosolic Ca2+ on the NAADP receptor in sea urchin egg homogenates. We report that neither cytosolic nor luminal Ca2+ appears to influence NAADP binding. Conversely, emptying of stores significantly amplifies NAADP-induced fractional Ca2+-release, providing a mechanism of self-adjustment independent of store loading.  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号