首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Kondo T 《Plant physiology》1988,88(3):953-958
Pulses of a fluorinated analog of leucine, 5′,5′,5′-trifluoroleucine, reset the phase of the circadian rhythm of K+ uptake in Lemna gibba G3 under continuous light conditions. The trifluoroleucine pulse caused the largest delay phase-shifts during the early subjective phase but it caused only small phase advances. The action of trifluoroleucine was investigated and the following results were obtained. (a) The uptake of trifluoroleucine was essentially the same at all circadian phases, even though phase shifting was dramatically different at different phases. At effective phases, the magnitude of phase shifting was well correlated with the amount of trifluoroleucine taken up by the duckweed. (b) The trifluoroleucine pulse lowered the endogenous content of valine and leucine but these decreases did not correlate with phase shifting. (c) Protein synthesis was not affected by trifluoroleucine pulses which caused large phase shifts. (d) Pulses of 4-azaleucine, a different structural analog of leucine, also caused phase shifting. However, neither the direction nor the effective times of phase shifting were similar to those of trifluoroleucine. Taken together, these results negate the proposition that trifluoroleucine and azaleucine caused phase shift by disturbing amino acid metabolism and/or inhibiting protein synthesis, but they suggest instead that these analogs are incorporated into some protein(s) which are necessary for normal clock operation.  相似文献   

2.
Protein serine/threonine phosphatases were implicated in the regulation of circadian rhythmicity in the marine dinoflagellate Gonyaulax polyedra based on the effects of three inhibitors specific for protein phosphatases 1 and 2A (okadaic acid, calyculin A, and cantharidin). Chronic exposure to okadaic acid resulted in a significant period lengthening, as measured by the bioluminescent glow rhythm, whereas cantharidin and calyculin A caused large phase delays but no persistent effect on period. Short pulses of the phosphatase inhibitors resulted in phase delays that were greatest near subjective dawn. Unlike 6-dimethylaminopurine, a protein kinase inhibitor, okadaic acid, calyculin A, and cantharidin did not block light-induced phase shifts. The inhibitors tested also increased radiolabeled phosphate incorporation into Gonyaulax proteins in vivo and blocked protein phosphatase 1 and 2A activities in Gonyaulax extracts. This study indicates that protein dephosphorylation catalyzed by protein serine/threonine phosphatases is necessary for proper functioning of the circadian system.  相似文献   

3.
The present experiments were designed to evaluate whether the intraventricular administration of excitatory amino acid (EAA) receptor antagonists would prevent light-induced phase shifts of the circadian rhythm of wheel-running activity in the hamster. Administration of the non-N-methyl-D-aspartate (non-NMDA) antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) blocked light-induced phase advances and delays. Similarly, administration of the competitive NMDA receptor antagonist, 3(2-carboxypiperazin-4-yl)-propyl-l-phosphonic acid (CPP), prevented light-induced phase advances and delays. Neither drug by itself caused any consistent effect on the phase of the rhythm. These data provide further evidence that EAA receptors mediate the effects of light on the circadian system, and suggest that both NMDA and non-NMDA receptor types may be involved.  相似文献   

4.
Serotonin, a putative neurotransmitter in insects, was found to cause consistent phase shifts of the circadian rhythm of locomotor activity of the cockroach Leucophaea maderae when administered during the early subjective night as a series of 4-microliters pulses (one every 15 min) for either 3 or 6 hr. Six-hour treatments with dopamine also caused significant phase shifts during the early subjective night, but 3-hr treatments with dopamine had no phase-shifting effect. Other substances tested in early subjective night (norepinephrine, octopamine, gamma-aminobutyric acid, glutamate, carbachol, histamine, tryptophan, tryptamine, N-acetyl serotonin, or 5-hydroxyindole-3-acetic acid) did not consistently cause phase shifts. The phase-shifting effect of serotonin was found to be phase-dependent. The phase response curve (PRC) for serotonin treatments was different from the PRC for light. Like light, serotonin caused phase delays in the late subjective day and early subjective night, but serotonin did not phase-shift rhythms when tested at phases where light causes phase advances.  相似文献   

5.
Abstract: The Xenopus retinal photoreceptor layer contains a circadian oscillator that regulates melatonin synthesis in vitro. The phase of this oscillator can be reset by light or dopamine. The phase-response curves for light and dopamine are similar, with transitions from phase delays to phase advances in the mid-subjective night. Light and dopamine each can inhibit adenylate cyclase in retinal photoreceptors, suggesting cyclic AMP as a candidate second messenger for entrainment of the circadian oscillator. We report here that treatments that increase intracellular cyclic AMP reset the phase of the photoreceptor circadian oscillator, and that the phase-response curves for these treatments are 180° out of phase with the phase-response curves for light and dopamine. Activation of adenylate cyclase by forskolin during the late subjective day or early subjective night caused phase advances. The same treatment during the late subjective night or early subjective day caused phase delays. Similar phase shifts were induced by 3-isobutyl-1-methyl-xanthine (a phosphodiesterase inhibitor) or 8-(4-chlorophenylthio)cyclic AMP. All of these treatments also acutely increased melatonin release. Forskolin and 3-isobutyl-1-methylxanthine increased the accumulation of intracellular cyclic AMP, but not cyclic GMP, in photoreceptor layers. The results indicate that cyclic AMP-dependent pathways regulate the photoreceptor circadian oscillator and suggest that a decrease in cyclic AMP may be involved in circadian entrainment by light and/or dopamine.  相似文献   

6.
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respectively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.  相似文献   

7.
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respectively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.  相似文献   

8.
Although light is considered the primary entrainer of circadian rhythms in humans, nonphotic stimuli, including exercise and melatonin also phase shift the biological clock. Furthermore, in birds and nonhuman mammals, auditory stimuli are effective zeitgebers. This study investigated whether a nonphotic auditory stimulus phase shifts human circadian rhythms. Ten subjects (5 men and 5 women, ages 18-72, mean age +/- SD, 44.7 +/- 21.4 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h auditory or control stimulus from 0100 to 0300 on the second and third nights (presentation order of the stimulus and control was counterbalanced). Core body temperature (CBT) was collected and stored in 2-min bins throughout the study and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Circadian phase of dim light melatonin onset (DLMO) and of CBT minimum, before and after auditory or control presentation was assessed. The auditory stimulus produced significantly larger phase delays of the circadian melatonin (mean +/- SD, -0.89 +/- 0.40 h vs. -0.27 +/- 0.16 h) and CBT (-1.16 +/- 0.69 h vs. -0.44 +/- 0.27 h) rhythms than the control. Phase changes for the two circadian rhythms also positively correlated, indicating direct effects on the biological clock. In addition, the auditory stimulus significantly decreased fatigue compared with the control. This study is the first demonstration of an auditory stimulus phase-shifting circadian rhythms in humans, with shifts similar in size and direction to those of other nonphotic stimuli presented during the early subjective night. This novel stimulus may be a useful countermeasure to facilitate circadian adaptation after transmeridian travel or shift work.  相似文献   

9.
Pigment-dispersing factors (PDFs) are octadeca-peptides widely distributed in insect optic lobes and brain. In this study, we have purified PDF and determined its amino acid sequence in the cricket Gryllus bimaculatus. Its primary structure was NSEIINSLLGLPKVLNDA-NH(2), homologous to other PDH family members so far reported. When injected into the optic lobe of experimentally blinded adult male crickets, Gryllus-PDF induced phase shifts in their activity rhythms in a phase dependent and dose dependent manner. The resulted phase response curve (PRC) showed delays during the late subjective night to early subjective day and advances during the mid subjective day to mid subjective night. The PRC was different in shape from those for light, serotonin and temperature. These results suggest that PDF plays a role in phase regulation of the circadian clock through a separate pathway from those of other known phase regulating agents.  相似文献   

10.
Dark pulses presented on a background of constant light (LL) result in phase advances during midsubjective day and early subjective night, and phase delays during late subjective night, as shown in the dark-pulse phase response curve. In hamsters, the phase-shifting effects of dark pulses are thought to be mediated by increased activity, as previous studies have shown that restraining animals during dark pulses blocks the phase shifts observed in midsubjective day and late subjective night. This study focuses on dark-pulse-induced phase shifting during early subjective night, examining the influence of both LL intensity and restraint on the magnitude of these phase shifts. Syrian hamsters were maintained in LL of four different illumination levels (1, 10, 100, or 600 lux) and periodically presented with 6-h pulses (dark pulse alone, restraint alone, or dark pulse plus restraint) beginning at circadian time 11. Phase advances were observed in response to dark pulses alone, and the magnitude of these shifts was dependent on background illumination, with significantly larger advances seen under higher intensities. No relationship was found between the amount of activity displayed during dark pulses and phase shift magnitude. Six-hour periods of restraint resulted in phase delays, the magnitude of which was also dependent on background illumination. Restraining hamsters during dark pulses reduced the magnitude of phase advances, but the extent of this reduction could be predicted from the additive effects of the dark-pulse-alone and restraint-alone conditions. These results indicate that the phase-shifting effects of dark pulses during early subjective night are not mediated by behavioral activation and may instead reflect a mirror image of the phase-delaying effects of light pulses at this phase.  相似文献   

11.
Ramelteon, an MT(1)/MT(2) melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90?μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8-CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6?±?0.29?h, n?=?3) and at CT2 phase delays (-3.2?±?0.12?h, n?=?6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7?±?0.15?h, n?=?4, p?相似文献   

12.
Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.  相似文献   

13.
Exposure for 4 hours to vanillic acid (4-hydroxy 3-methoxy benzoic acid) caused large delay phase shifts (5 to 6 hours) in the circadian rhythm of bioluminescence in Gonyaulax polyedra, when assayed at either 10 to 14 circadian time or 22 to 02 circadian time in constant light and temperature, provided that the pH of the medium was 7.1 or lower. Corresponding changes in the pH with acetic acid did not shift phase. Vanillic acid caused detectable depolarization of the membranes of Gonyaulax, as demonstrated with the cyanine dye fluorescence technique.  相似文献   

14.
In growing cultures of the dinoflagellate, Gonyaulax polyedra, total protein synthesis showed a circadian rhythm with a maximum during the phase of the cycle which corresponded to the previous darktime. The maximum coincided with the maximal phase shift of the glow rhythm caused by lower concentrations of the antibiotic anisomycin (Taylor, W., et al., 1982). J. Comp. Physiol. 148 B, 11–25. The dose reponses of inhibition of protein synthesis correlated well with the phase shifting by anisomycin. The amplitude and level of the total-protein synthesis rhythm increased with the growth rate, indicating that the majority of proteins controlled by the circadian clock were cell cycle-dependent. The degradation rate showed the same circadian rhythm as the synthesis rate. Slight variations in uptake and pool size of amino acids were not responsible for the rhythm in the protein-synthesis rate.  相似文献   

15.
The circadian pacemaker in the mammalian suprachiasmatic nuclei is responsive to photic and nonphotic stimuli. In the present study, the authors have investigated the response of activity onset and offset to application of nonphotic stimuli: the benzodiazepine midazolam and the opioid receptor agonist fentanyl. In correspondence with previous studies, both stimuli induced phase advances of the activity onset when given in the mid- to late subjective day. In contrast, activity offset did not phase advance following these injections. Injections during the early subjective day induced small phase delays of the activity onset, while large phase delays occurred in activity offset. Phase shifts, induced at both circadian time zones, were paralleled by an increase in the length of daily activity (alpha). The increase in a remained present during several days after the injection. The different kinetics in phase shifting of the activity onset and offset indicate complexity in phase-shifting behavior of the circadian pacemaker in response to nonphotic stimuli. Moreover, the data show responsiveness of the circadian system to GABA-ergic and opioid receptor activation, not only during the mid- to late subjective day but also during the early subjective day. The data implicate that the early subjective day is an interesting phase for analysis of molecular and biochemical processes involved in nonphotic phase shifting.  相似文献   

16.
In vertebrate retina, light hyperpolarizes the photoreceptor membrane, and this is an essential cellular signal for vision. Cellular signals responsible for photic entrainment of some circadian oscillators appear to be distinct from those for vision, but it is not known whether changes in photoreceptor membrane potential play roles in photic entrainment of the photoreceptor circadian oscillator. The authors show that a depolarizing exposure to high potassium resets the circadian oscillator in cultured Xenopus retinal photoreceptor layers. A 4-h pulse of high [K(+)] (34 mM higher than in normal culture medium) caused phase shifts of the melatonin rhythm. This treatment caused phase delays during the early subjective day and phase advances during the late subjective day. In addition to the phase-shifting effect, high potassium pulses stimulated melatonin release acutely at all times. High [K(+)] therefore mimicked dark in its effects on oscillator phase and melatonin synthesis. These results suggest that membrane potential may play a role in photic entrainment of the photoreceptor circadian oscillator and in regulation of melatonin release.  相似文献   

17.
Single 2h administration of diazepam (benzodiazepine) in 3.5% ethanol solution was found to evoke advance and delay phase shifts in the locomotor activity rhythm in the field mouseMus booduga. Through such pulsed administration of diazepam at various phases of circadian rhythm a phase response curve could be constructed. Phase advance occurred during early subjective day (CT 2) and phase delays were observed in the remaining phases. The shape of the diazepam phase response curve is similar to the general shape of the phase response curves generated by intraperitoneal injections of other benzodiazepines in hamsters. The phase shifting action of diazepam may be explained by its agonistic action on the neurotransmitter gamma-aminobutyric acid.  相似文献   

18.
Abstract

The circadian rhythm in the flight activity of a tropical microchiropteran bat Taphozous melanopogon responds at all phases with delay phase shifts to single light‐on steps (DD/LL transfers). The circadian rhythm responds at all phases with advance phase shifts to single light‐off steps (LL/DD transfers). Phase shifts were measured from the delays or advances of the onsets of flight activity on days following DD/LL and LL/DD transfers relative to the temporal course of the onsets of activity in controls. The magnitude of the phase shifts was a function of the phases in which the transfers were made. The On‐PRC and Off‐PRC plotted from such data are mirror‐images in their time‐course and wave‐form.

The phase shifts of the circadian rhythm in either direction were accompanied by changes in period (for the duration of our recordings after die transfer). The period lengthened following a delay shift and it shortened following an advance shift. The phase shifts are abrupt and discernible in the first cycle after perturbation. There are no transients.  相似文献   

19.
A single 2h light pulse (250 lux) was given at various times to phase shift the locomotor circadian rhythm of two species of closely related cockroaches, Blattella bisignata and Blatella germanica. The phase-response curve (PRC) of both species showed a similar pattern. Phase delays and advances were induced by light pulse during the early and late subjective night, respectively, while no clear phase shifting was elicited during the subjective day. However, the magnitude of the phase delay (1.89h +/- 0.66h) and advance (0.69h +/- 0.36h) of B. bisignata was significantly larger than that of B. germanica (0.78h +/- 0.38h and 0.35h +/- 0.18h, respectively). This result indicates the superior adjustability of the circadian clock in B. bisignata. The period-response curve (PdRC) was also constructed for both species. Although both species did not show great flexibility in circadian period changes, the phase shifts were significantly correlated with the period changes in the advance zone of B. bisignata (r = 0.72, P < .1). This allowed the circadian clock of B. bisignata to display better entrainability since the phase advance adjustment was significantly more difficult than that of phase delay. The results indicate the overall adjustability of the circadian clock of B. germanica is inferior to that of B. bisignata. The significance of this finding is discussed from an ecological perspective.  相似文献   

20.
The effects of a translation inhibitor, cycloheximide (CHX), on the circadian neuronal activity rhythm of the optic lamina-medulla compound eye complex cultured in vitro were investigated in the cricket Gryllus bimaculatus. When the complex was treated with 10(-5) M CHX for 6 h, the rhythm exhibited a marked phase shift. The magnitude and direction of the phase shift were dependent on the phase at which the complex was treated with CHX; phase delays occurred during the late subjective day to early subjective night, whereas phase advances occurred around the late subjective night. Continuous application of CHX abolished circadian rhythms of both the spontaneous neuronal activity and the visually evoked response. However, it abolished neither the spontaneous activity nor the visually evoked response. As washed with fresh medium after CHX treatment, the rhythm soon reappeared and the subsequent phase was clearly correlated to the termination time of the treatment. These results suggest that protein synthesis is also involved in the cricket optic lobe circadian clock, and that the clock-related protein synthesis may be active during the late subjective day to subjective night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号