首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M R Foolad  L P Zhang  P Subbiah 《Génome》2003,46(4):536-545
A BC1 population (N = 1000) of an F1 hybrid between a stress-sensitive Lycopersicon esculentum breeding line (NC84173; maternal and recurrent parent) and a germination stress-tolerant Lycopersicon pimpinellifolium accession (LA722) was evaluated for seed germination rate under drought stress (DS) (14% w/v polyethyleneglycol-8000, water potential approximately -680 kPa), and the most rapidly germinating seeds (first 3% to germinate) were selected. The 30 selected BC1 seedlings were grown to maturity and self pollinated to produce BC1S1 progeny seeds. Twenty of the 30 selected BC1S1 progeny families were evaluated for germination rate under DS and their average performance was compared with that of a "nonselected" BC1S1 population of the same cross. Results indicated that selection for rapid germination under DS significantly improved progeny germination rate under DS (selection gain = 19.6%), suggesting a realized heritability of 0.47 for rate of germination under DS in this population. The 30 selected BC1 plants were subjected to restriction fragment length polymorphism (RFLP) analysis, and marker allele frequencies for 119 RFLP markers which spanned 1153 cM of the 12 tomato chromosomes were determined. A distributional extreme marker analysis, which measures statistical differences in marker allele frequencies between a selected and a nonselected population, detected four quantitative trait loci (QTLs) for rate of germination under DS in this population. Of these, two QTLs, located on chromosomes 1 and 9, were contributed by the L. pimpinellifolium donor parent and had larger effects than the other two QTLs, located on chromosomes 8 and 12, which were contributed by the L. esculentum recurrent parent. A few BC1S1 families were identified with all or most of the identified QTLs and with germination rates comparable with that of LA722. These families should be useful for the development of germination drought-tolerant tomato lines using marker-assisted selection (MAS). The overall results indicate that drought tolerance during seed germination in tomato is genetically controlled and potentially could be improved by directional phenotypic selection or MAS.  相似文献   

2.
Quantitative trait loci (QTLs) for several fruit traits in tomato were mapped and characterized in a backcross population of an interspecific cross between Lycopersicon esculentum fresh-marker breeding line NC84173 and L. pimpinellifolium accession LA722. A molecular linkage map of this cross that was previously constructed based on 119 BC1 individuals and 151 RFLP markers was used for the QTL mapping. The parental lines and 119 BC1S1 families (self-pollinated progeny of BC1 individuals) were grown under field conditions at two locations, Rock Spring, PA, and Davis, CA, and fruits were scored for weight (FW), polar (PD) and equatorial diameters (ED), shape (FS), total soluble solids content (SSC), pH and lycopene content (LYC). For each trait, between 4 and 10 QTLs were identified with individual effects ranging between 4.4% and 32.9% and multilocus QTL effects ranging between 39% and 75% of the total phenotypic variation. Most QTL effects were predictable from the parental phenotypes, and several QTLs were identified that affected more than one trait. A few pairwise epistatic interactions were detected between QTL-linked and QTL-unlinked markers. Despite great differences between PA and CA growing conditions, the majority of FW QTLs (78%) and SSC QTLs (75%) in the two locations shared similar genomic positions. Almost all of the QTLs that were identified in the present study for FW and SSC were previously identified in six other studies that used different interspecific crosses of tomato; this indicates conservation of QTLs for fruit traits across tomato species. Altogether, the seven studies identified at least 28 QTLs for FW and 32 QTLs for SSC on the 12 tomato chromosomes. However, for each trait a few major QTLs were commonly identified in 4 or more studies; such ‘popular’ QTLs should be of considerable interest for breeding purposes as well as basic research towards cloning of QTLs. Notably, a majority of QTLs for increased SSC also contributed to decreased fruit size. Therefore, to significantly increase SSC of the cultivated tomato, some compromise in fruit size may be unavoidable. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
This study was conducted to identify genomic regions (quantitative trait loci, QTLs) affecting salt tolerance during germination in tomato. Germination response of an F2 population of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl + 17.5 mM CaCl2 (water potential ca. –950 kPa). Germination was scored visually as radicle protrusion at 6 h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerant and salt-sensitive individuals) were selected. The selected individuals were genotyped at 84 genetic markers including 16 isozymes and 68 restriction fragment length polymorphisms (RFLPs). Trait-based marker analysis (TBA) which measures changes (differences) in marker allele frequencies in selected lines was used to identify marker-linked QTLs. Eight genomic regions were identified on seven tomato chromosomes bearing genes (QTLs) with significant effects on this trait. The results confirmed our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The salt-tolerant parent contributed favorable QTL alleles on chromosomes 1, 3, 9 and 12 whereas the salt sensitive parent contributed favorable QTL alleles on chromosomes 2, 7 and 8. The identification of favorable alleles in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these parental genotypes. The results can be used for marker-assisted selection and breeding of salt-tolerant tomatoes.  相似文献   

4.
QTLs for salt-tolerance(ST)related traits at the seedling and tillering stages were identified using 99 BC2F8 introgression lines(IL)derived from a cross between IR64(indica)as a recurrent parent and Binam(japonica)from Iran as the donor parent.Thirteen QTLs affecting survival days of seedlings(SDS), score of salt toxicity of leaves(SST),shoot K concentration(SKC)and shoot Na concentration(SNC) at the seedling stage and 22 QTLs underlying fresh weight of shoots(FW),tiller number per plant(TN) and plant height(PH)at the tillering stage were identified.Most QTLs detected at the tillering stage showed obvious differential expression to salt stress and were classified into three types based on their differential behaviors.Type I included 11 QTLs which were expressed only under the non-stress condition.Type II included five QTLs expressed in the control and the salt stress conditions,and three of them(QPh5,QPh8 and QTn9)had similar quantity and the same direction of gene effect,suggesting their expression was less influenced by salt stress.Type III included six QTLs which were detectable only under salt stress,suggesting that these QTLs were apparently induced by the stress.Thirteen QTLs affecting trait difference or trait stability of ILs between the stress and non-stress conditions were identified and the Binam alleles at all loci except QPh4,QTn2 and QFw2a decreased trait difference.The three QTLs less influenced by the stress and 13 QTLs affecting trait stability were considered as ST QTLs which contributed to ST.Comparing the distribution of QTLs detected at the seedling and tillering stages,most(69%)of them were genetically independent.Only four were the same or adjacent regions on chromosomes 1,2,8 and 11 harboring ST QTLs detected at the two stages,suggesting that partial genetic overlap of ST across the two stages occurs.It is likely,therefore,to develop ST rice variety for both stages by pyramiding of ST QTLs of different stages or selection against the overlapping QTLs between the two stages via marker-assisted selection(MAS).  相似文献   

5.
 Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated using an interspecific backcross between a salt-sensitive Lycopersicon esculentum breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). One hundred and nineteen BC1 individuals were genotyped for 151 RFLP markers and a linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for salt tolerance in aerated saline-solution cultures with the salt concentration gradually raised to 700 mM NaCl+70 mM CaCl2 (equivalent to an electrical conductivity of approximately 64 dS/m and a water potential of approximately −35.2 bars). The two parental lines were distinctly different in salt tolerance: 80% of the LA722 plants versus 25% of the NC84173 plants survived for at least 2 weeks after the final salt concentration was reached. The BC1S1 population exhibited a continuous variation, typical of quantitative traits, with the survival rate of the BC1S1 families ranging from 9% to 94% with a mean of 51%. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-marker analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and five QTLs were identified on chromosomes 1 (two QTLs), 3, 5 and 9. Each QTL accounted for between 5.7% and 17.7%, with the combined effects (of all five QTLs) exceeding 46%, of the total phenotypic variation. All QTLs had the positive QTL alleles from the salt-tolerant parent. Across QTLs, the effects were mainly additive in nature. Digenic epistatic interactions were evident among several QTL-linked and QTL-unlinked markers. The overall results indicate that tomato salt tolerance during the vegetative stage could be improved by marker-assisted selection using interspecific variation. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

6.
This study was conducted to identify randomly amplified polymorphic DNA (RAPD) markers associated with quantitative trait loci (QTLs) conferring salt tolerance during germination in tomato. Germination response of an F2 population (2000 individuals) of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl+17.5 mM CaCl2 (water potential ca. –9.5 bars). Germination was scored visually as radicle protrusion at 6-h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerants and salt-sensitives) were selected. The selected individuals were genotyped for 53 RAPD markers and allele frequencies at each marker locus were determined. The linkage association among the markers was determined using a “Mapmaker” program. Trait-based marker analysis (TBA) identified 13 RAPD markers at eight genomic regions that were associated with QTLs affecting salt tolerance during germination in tomato. Of these genomic regions, five included favorable QTL alleles from LA716, and three included favorable alleles from UCT5. The approximate effects of individual QTLs ranged from 0.46 to 0.82 phenotypic standard deviation. The results support our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The identification of favorable QTLs in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these genotypes. Results from this study are discussed in relation to using marker-assisted selection in breeding for salt tolerance. Received: 16 June 1997 / Revision received: 11 August 1997 / Accepted: 2 September 1997  相似文献   

7.
Advanced backcross QTL analysis in barley (Hordeum vulgare L.)   总被引:4,自引:0,他引:4  
This paper reports on the first advanced backcross-QTL (quantitative trait locus) project which utilizes spring barley as a model. A BC(2)F(2) population was derived from the initial cross Apex ( Hordeum vulgare ssp. vulgare, hereafter abbreviated with Hv) x ISR101-23 ( H. v. ssp. spontaneum, hereafter abbreviated with Hsp). Altogether 136 BC(2)F(2) individuals were genotyped with 45 SSR (simple sequence repeat) markers. Subsequently, field data for 136 BC(2)F(2) families were collected for 13 quantitative traits measured in a maximum of six environments. QTLs were detected by means of a two-factorial ANOVA with a significance level of P < 0.01 for a marker main effect and a marker x environment (M x E) interaction, respectively. Among 585 marker x trait combinations tested, 86 putative QTLs were identified. At 64 putative QTLs, the marker main effect and at 27 putative QTLs, the M x E interaction were significant. In five cases, both effects were significant. Among the putative QTLs, 29 (34%) favorable effects were identified from the exotic parent. At these marker loci the homozygous Hsp genotype was associated with an improvement of the trait compared to the homozygous Hv genotype. In one case, the Hsp allele was associated with a yield increase of 7.7% averaged across the six environments tested. A yield QTL in the same chromosomal region was already reported in earlier barley QTL studies.  相似文献   

8.
Lycopersicon parviflorum is a sexually compatible, wild tomato species which has been largely unutilized in tomato breeding. The Advanced Backcross QTL (AB-QTL) strategy was used to explore this genome for QTLs affecting traits of agronomic importance in an interspecific cross between a tomato elite processing inbred, Lycopersicon esculentum E6203, and the wild species L. parviflorum (LA2133). A total of 170 BC2 plants were genotyped by means of 133 genetic markers (131 RFLPs; one PCR-based marker, I-2, and one morphological marker, u, uniform ripening). Approximately 170 BC3 families were grown in replicated field trials, in California, Spain and Israel, and were scored for 30 horticultural traits. Significant putative QTLs were identified for all traits, for a total of 199 QTLs, ranging from 1 to 19 QTLs detected for each trait. For 19 (70%) traits (excluding traits for which effects of either direction are not necessarily favourable or unfavourable) at least one QTL was identified for which the L. parviflorum allele was associated with an agronomically favourable effect, despite the overall inferior phenotype of the wild species. Received: 14 September 1999 / Accepted: 7 October 1999  相似文献   

9.
Most cultivars of tomato, Lycopersicon esculentum, are sensitive to low (chilling) temperatures (0–15 °C) during seed germination; however, genetic sources of cold (chilling) tolerance have been identified within the related wild species. The purpose of this study was to identify quantitative trait loci (QTLs) that contribute to cold tolerance during germination in tomato using a backcross population of an interspecific cross between a cold-sensitive tomato line (NC84173, recurrent parent) and a L. pimpinellifolium accession (LA722) that germinates rapidly under low temperatures. A total of 119 BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for germination at a low temperature (11±0.5 °C). Germination was scored visually as radicle protrusion at 8 h intervals for 28 consecutive days. Germination response was analyzed by the survival analysis and the times to 25, 50 and 75% germination were calculated. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-point analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and two chromosomal locations (3–5 putative QTLs) with significant effects on low temperature germination were identified. The L. pimpinellifolium accession had favorable QTL alleles on chromosomes 1 and NC84173 had favorable QTL alleles on chromosome 4. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 11.9% to 33.4%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 43.8% of the total phenotypic variance. Digenic epistatic interactions were evident between two of the QTL-linked markers and two unlinked markers. Transgressive phenotypes were observed in the direction of cold sensitivity. The results indicate that low temperature germination of tomato seed can be improved by marker-assisted selection.  相似文献   

10.
The germination responsiveness of an F2 population derived from the cross Lycopersicon esculentum (UCT5) x L. pennellii (LA716) was evaluated for salt tolerance at two stress levels, 150 mM NaCl + 15 mM CaCl2 and 200 mM NaCl + 20 mM CaCl2. Individuals were selected at both tails of the response distribution. The salt-tolerant and salt-sensitive individuals were genotyped at 16 isozyme loci located on 9 of the 12 tomato chromosomes. In addition, an unselected (control) F2 population was genotyped at the same marker loci, and gene frequencies were estimated in both selected and unselected populations. Trait-based marker analysis was effective in identifying genomic locations (quantitative trait loci, QTLs) affecting salt tolerance in the tomato. Three genomic locations marked by Est-3 on chromosome 1, Prx-7 on chromosome 3, and 6Pgdh-2 and Pgi-1 on chromosome 12 showed significant positive effects, while 2 locations associated with Got-2 on chromosome 7 and Aps-2 on chromosome 8 showed significant negative effects. The identification of genomic locations with both positive and negative effects on this trait suggests the likelihood of recovering transgressive segregants in progeny derived from these parental lines. Similar genomic locations were identified when selection was made either for salt tolerance or salt sensitivity and at both salt-stress treatments. Comparable results were obtained in uni- and bidirectional selection experiments. However, when marker allele gene frequencies in a control population are unknown, bidirectional selection may be more efficient than unidirectional selection in identifying marker-QTL associations. Results from this study are discussed in relationship to the use of molecular markers in developing salt-tolerant tomatoes.  相似文献   

11.
Although tomato has been the subject of extensive quantitative trait loci (QTLs) mapping experiments, most of this work has been conducted on transient populations (e.g., F2 or backcross) and few homozygous, permanent mapping populations are available. To help remedy this situation, we have developed a set of inbred backcross lines (IBLs) from the interspecific cross between Lycopersicon esculentum cv. E6203 and L. pimpinellifolium (LA1589). A total of 170 BC2F1 plants were selfed for five generations to create a set of homozygous BC2F6 lines by single-seed descent. These lines were then genotyped for 127 marker loci covering the entire tomato genome. These IBLs were evaluated for 22 quantitative traits. In all, 71 significant QTLs were identified, 15% (11/71) of which mapped to the same chromosomal positions as QTLs identified in earlier studies using the same cross. For 48% (34/71) of the detected QTLs, the wild allele was associated with improved agronomic performance. A number of new QTLs were identified including several of significant agronomic importance for tomato production: fruit shape, firmness, fruit color, scar size, seed and flower number, leaf curliness, plant growth, fertility, and flowering time. To improve the utility of the IBL population, a subset of 100 lines giving the most uniform genome coverage and map resolution was selected using a randomized greedy algorithm as implemented in the software package MapPop (http://www.bio.unc.edu/faculty/vision/lab/ mappop/). The map, phenotypic data, and seeds for the IBL population are publicly available (http://soldb.cit.cornell.edu) and will provide tomato geneticists and breeders with a genetic resource for mapping, gene discovery, and breeding.  相似文献   

12.
Most commercial cultivars of tomato, Lycopersicon esculentum Mill., are susceptible to early blight (EB), a devastating fungal ( Alternaria solani Sorauer) disease of tomato in the northern and eastern parts of the U.S. and elsewhere in the world. The disease causes plant defoliation, which reduces yield and fruit quality, and contributes to significant crop loss. Sources of resistance have been identified within related wild species of tomato. The purpose of this study was to identify and validate quantitative trait loci (QTLs) for EB resistance in backcross populations of a cross between a susceptible tomato breeding line (NC84173; maternal and recurrent parent) and a resistant Lycopersicon hirsutum Humb. and Bonpl. accession (PI126445). Sixteen hundred BC(1) plants were grown to maturity in a field in 1998. Plants that were self-incompatible, indeterminant in growth habit, and/or extremely late in maturity, were discarded in order to eliminate confounding effects of these factors on disease evaluation, QTL mapping, and future breeding research. The remaining 145 plants (referred to as the BC(1) population) were genotyped for 141 restriction fragment length polymorphism (RFLP) markers and 23 resistance gene analogs (RGAs), and a genetic linkage map was constructed. BC(1) plants were evaluated for disease symptoms throughout the season, and the area under the disease progress curve (AUDPC) and the final percent defoliation (disease severity) were determined for each plant. BC(1) plants were self-pollinated and produced BC(1)S(1) seed. The BC(1)S(1) population, consisting of 145 BC(1)S(1) families, was grown and evaluated for disease symptoms in replicated field trials in two subsequent years (1999 and 2000) and AUDPC and/or final percent defoliation were determined for each family in each year. Two QTL mapping approaches, simple interval mapping (SIM) and composite interval mapping (CIM), were used to identify QTLs for EB resistance in the BC(1) and BC(1)S(1) populations. QTL results were highly consistent across generations, years and mapping approaches. Approximately ten significant QTLs (LOD >/= 2.4, P 57% of the total phenotypic variation. All QTLs had the positive alleles from the disease-resistant parent. The good agreement between results of the BC(1) and 2 years of the BC(1)S(1) generations indicated the stability of the identified QTLs and their potential usefulness for improving tomato EB resistance using marker-assisted selection (MAS). Further inspections using SIM and CIM indicated that six of the ten QTLs had independent additive effects and together could account for up to 56.4% of the total phenotypic variation. These complementary QTLs, which were identified in two generations and 3 years, should be the most useful QTLs for MAS and improvement of tomato EB resistance using PI126445 as a gene resource. Furthermore, the chromosomal locations of 10 of the 23 RGAs coincided with the locations of three QTLs, suggesting possible involvement of these RGAs with EB resistance and a potential for identifying and cloning genes which confer EB resistance in tomato.  相似文献   

13.
 Most cultivars of tomato (Lycopersicon esculentum) are sensitive to salinity during seed germination and at later stages. Genetic resources for salt tolerance have been identified within the related wild species of tomato. The purpose of the present study was to identify quantitative trait loci (QTLs) for salt tolerance during germination in an inbred backcross (BC1S1) population of an interspecific cross between a salt-sensitive tomato breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). Onehundred and nineteen BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of 119 BC1 individuals) were evaluated for germination at an intermediate salt-stress level (150 mM NaCl+15 mM CaCl2, water potential approximately −850 kPa). Germination was scored visually as radicle protrusion at 8-h intervals for 28 consecutive days. Germination response was analyzed by survival analysis and the time to 25, 50, and 75% germination was determined. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Interval mapping, single-marker analysis and distributional extreme analysis, were used to identify QTLs and the results of all three mapping methods were generally similar. Seven chromosomal locations with significant effects on salt tolerance were identified. The L. pimpinellifolium accession had favorable QTL alleles at six locations. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 6.5 to 15.6%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 44.5% of the total phenotypic variance. A total of 12 pairwise epistatic interactions were identified, including four between QTL-linked and QTL-unlinked regions and eight between QTL-unlinked regions. Transgressive phenotypes were observed in the direction of salt sensitivity. The graphical genotyping indicated a high correspondence between the phenotypes of the extreme families and their QTL genotypes. The results indicate that tomato salt tolerance during germination can be improved by marker-assisted selection using interspecific variation. Received: 29 January 1998 / Accepted: 4 June 1998  相似文献   

14.
BackgroundIncreasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches.ResultsThe populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait.ConclusionsThis study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.  相似文献   

15.
To understand the genetic characteristics of the traits related to differentiation between cultivated rice and its wild progenitor, genetic factors controlling domestication- and yield-related traits were identified using a BC3F2 population derived from an accession of common wild rice (donor, Oryza rufipogon Griff.) collected from Yuanjiang, Yunnan province, China, and an indica cultivar, Teqing (recipient, Oryza sativa L.). A genetic linkage map consisting of 125 simple sequence repeat (SSR) markers was constructed. Based on the phenotypes of the 383 BC3F2 families evaluated in two environments, two domestication-related morphological traits, panicle shape and growth habit, were found to be controlled by single Mendelian factors. This implies that the recessive mutations of single genes controlling some morphological traits could have been easily selected during early domestication. By single-point analysis and interval mapping, 59 putative quantitative trait loci (QTLs) that influence 11 quantitative traits were detected at two sites, and 37.5% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield-related traits in the Teqing background. Regions with significant QTLs for domestication- and yield-related traits were detected on chromosomes 1, 4, 5, 7, 8, and 12. Fine mapping and cloning of these domestication-related genes and QTLs will be useful in elucidating the origin and differentiation of Asian cultivated rice in the future.  相似文献   

16.
Most commercial cultivars of tomato, Lycopersicon esculentum Mill., are susceptible to early blight (EB), a devastating fungal (Alternaria solani Sorauer) disease of tomato in the U.S. and elsewhere in the world. Currently, sanitation, long crop rotation, and routine application of fungicides are the most common disease control measures. Although no source of genetic resistance is known within the cultivated species of tomato, resistant resources have been identified within related wild species. The purpose of this study was to identify and validate quantitative trait loci (QTLs) conferring EB resistance in an accession (PI126445) of the tomato wild species L. hirsutum Humb. and Bonpl. by using a selective genotyping approach. A total of 820 BC1 plants of a cross between an EB susceptible tomato breeding line (NC84173; maternal and recurrent parent) and PI126445 were grown in a greenhouse. During late seedling stage, plants were inoculated with mixed isolates of A. solani and subsequently evaluated for EB symptoms. The most resistant (75 plants = 9.1%) and most susceptible (80 = 9.8%) plants were selected and subsequently transplanted into a field where natural infestation of EB was severe. Plants were grown to maturity and evaluated for final disease severity. From among the 75 resistant plants, 46 (5.6% of the total) that exhibited the highest resistance, and from among the 80 susceptible plants, 30 (3.7% of the total) that exhibited the highest susceptibility, were selected. The 76 selected plants, representing the two extreme tails of the response distribution, were genotyped for 145 restriction fragment length polymorphism (RFLP) markers and 34 resistance gene analogs (RGAs). A genetic linkage map, spanning approximately 1298 cM of the 12 tomato chromosomes with an average marker distance of 7.3 cM, was constructed. A trait-based marker analysis (TBA), which measures differences in marker allele frequencies between extreme tails of a population, detected seven QTLs for EB resistance, one on each of chromosomes 3, 4, 5, 6, 8, 10 and 11. Of these, all but the QTL on chromosome 3 were contributed from the resistant wild parent, PI126445. The standardized effects of the QTLs ranged from 0.45 to 0.81 phenotypic standard deviations. Four of the seven QTLs were previously identified in a study where different populations and mapping strategy were used. The high level of correspondence between the two studies indicated the reliability of the detected QTLs and their potential use for marker-assisted breeding for EB resistance. The location of several RGAs coincided with locations of EB QTLs or known tomato resistance genes (R genes), suggesting that these RGAs could be associated with disease resistance. Furthermore, similar to that for many R gene families, several RGA loci were identified in clusters, suggesting their potential evolutionary relationship with R genes.  相似文献   

17.
Comparison of maps and QTLs between populations may provide us with a better understanding of molecular maps and the inheritance of traits. We developed and used two reciprocal BC1F1 populations, IP/DS//IP and IP/DS//DS, for QTL analysis. DS (Dasanbyeo) is a Korean tongil-type cultivar (derived from an indica x japonica cross and similar to indica in its genetic make-up) and IP (Ilpumbyeo) is a Korean japonica cultivar. We constructed two molecular linkage maps corresponding to each backcross population using 196 markers for each map. The length of each chromosome was longer in the IP/DS//IP population than in the IP/DS//DS population, indicating that more recombinants were produced in the IP/DS//IP population. Distorted segregation was observed for 44 and 19 marker loci for the IP/DS//IP and IP/DS//DS populations, respectively; these were mostly skewed in favor of the indica alleles. A total of 36 main effect QTLs (M-QTLs) and 15 digenic epistatic interactions (E-QTLs) were detected for the seven traits investigated. The phenotypic variation explained (PVE) by M-QTLs ranged from 3.4% to 88.2%. Total PVE of the M-QTLs for each trait was significantly higher than that of the E-QTLs. The total number of M-QTLs identified in the IP/DS//IP population was higher than in the IP/DS//DS population. However, the total PVE by the M-QTLs and E-QTLs together for each trait was similar in the two populations, suggesting that the two BC1F1 populations are equally useful for QTL analysis. Maps and QTLs in the two populations were compared. Eleven new QTLs were identified for SN, SF, GL, and GW in this study, and they will be valuable in marker-assisted selection, particularly for improving grain traits in tongil-type varieties.  相似文献   

18.
Improved eating quality is a major breeding target in japonica rice due to market demand. In this study, we performed genetic analysis to identify quantitative trait loci (QTLs) that control rice eating quality traits using 192 recombinant inbred lines (RILs) derived from a cross between two japonica cultivars, 'Suweon365' and 'Chucheongbyeo'. We evaluated the stickiness (ST) and overall evaluation (OE) of cooked rice using a sensory test, the glossiness of cooked rice (GCR) using a Toyo-taste meter, and measured the amylose content (AC), protein content (PC), alkali digestion value (ADV), and days to heading (DH) of the RILs in the years 2006 and 2007. Our analysis revealed 21 QTLs on chromosomes 1, 4, 6, 7, 8, and 11. QTLs on chromosomes 6, 7, and 8 were detected for three traits related to eating quality in both years. QTLs for ST and OE were identified by a sensory test in the same region of the QTLs for AC, PC, ADV, GCR and DH on chromosome 8. QTL effects on the GCR were verified using QTL-NILs (near-isogenic lines) of BC(3)F(4-6) in the Suweon365 background, a low eating quality variety, and some BC(1)F(3) lines. Chucheongbyeo alleles at QTLs on chromosomes 7 and 8 increased the GCR in the NILs and backcrossed lines. The QTLs identified by our analysis will be applicable to future marker-assisted selection (MAS) strategies for improving the eating quality of japonica rice.  相似文献   

19.
Fourteen Brazilian Gir sire families with 657 daughters were analyzed for quantitative trait loci (QTL) on chromosome 6 affecting lactose and total solids. Cows and sires were genotyped with 27 microsatellites with a mean spacing between markers of 4.9 cM. We used a 1% chromosome-wide threshold for QTL qualification. A QTL for lactose yield was found close to marker MNB66 in three families. A QTL for total solid yield was identified close to marker BMS2508 in three families. A QTL for lactose percentage, close to marker DIK1182, was identified in two families. A QTL for total solid percentage, close to marker MNB208, was identified in four families. These QTLs could be used for selection of animals in dairy production systems.  相似文献   

20.
Y Cui  F Zhang  J Xu  Z Li  S Xu 《Heredity》2015,115(6):538-546
Quantitative trait locus (QTL) mapping is often conducted in line-crossing experiments where a sample of individuals is randomly selected from a pool of all potential progeny. QTLs detected from such an experiment are important for us to understand the genetic mechanisms governing a complex trait, but may not be directly relevant to plant breeding if they are not detected from the breeding population where selection is targeting for. QTLs segregating in one population may not necessarily segregate in another population. To facilitate marker-assisted selection, QTLs must be detected from the very population which the selection is targeting. However, selected breeding populations often have depleted genetic variation with small population sizes, resulting in low power in detecting useful QTLs. On the other hand, if selection is effective, loci controlling the selected trait will deviate from the expected Mendelian segregation ratio. In this study, we proposed to detect QTLs in selected breeding populations via the detection of marker segregation distortion in either a single population or multiple populations using the same selection scheme. Simulation studies showed that QTL can be detected in strong selected populations with selected population sizes as small as 25 plants. We applied the new method to detect QTLs in two breeding populations of rice selected for high grain yield. Seven QTLs were identified, four of which have been validated in advanced generations in a follow-up study. Cloned genes in the vicinity of the four QTLs were also reported in the literatures. This mapping-by-selection approach provides a new avenue for breeders to improve breeding progress. The new method can be applied to breeding programs not only in rice but also in other agricultural species including crops, trees and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号