首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The occurrence of vimentin, a specific intermediate filament protein, has been studied by immunoflourescence microscopy in tissue of adult and embryonic brain as well as in cell cultures from nervous tissue. By double imminofluorescence labeling, the distribution of vimentin has been compared with that of subunit proteins of other types of intermediate filaments (glial fibrillary acidic [GFA] protein, neurofilament protein, prekeratin) and other cell-type specific markers (fibronectin, tetanus toxin receptor, 04 antigen). In adult brain tissue, vimentin is found not only in fibroblasts and cells of larger blood vessels but also in ependymal cells and astrocytes. In embryonic brain tissue, vimentin is detectable as early as embryonic day 11, the earliest stage tested, and is located in radial fibers spanning the neural tube, in ventricular cells, and in blood vessels. At all stages tested, oligodendrocytes and neurons do not express detectable amounts of vimentin. In primary cultures of early postnatal mouse cerebellum, a coincident location of vimentin and GFA protein is seen in astrocytes, and both types of filament proteins are included in the perinuclear aggregates formed upon exposure of the cells to colcemid. In cerebellar cell cultures of embryonic-day-13 mice, vimentin is seen in various cell types of epithelioid or fibroblastlike morphology but is absent from cells expressing tetanus toxin receptors. Among these embryonic, vimentin-positive cells, a certain cell type reacting neither with tetanus toxin nor with antibodies to fibronectin or GFA protein has been tentatively identified as precursor to more mature astrocytes. The results show that, in the neuroectoderm, vimentin is a specific marker for astrocytes and ependymal cells. It is expressed in the mouse in astrocytes and glial precursors well before the onset of GFA protein expression and might therefore serve as an early marker of glial differentiation. Our results show that vimentin and GFA protein coexist in one cell type not only in primary cultures in vitro but also in the intact tissue in situ.  相似文献   

2.
This study examines the early organization of glial cells, together with the expression of chondroitin sulfate proteoglycans in the developing thalamus of ferrets. Glia were identified with antibodies against vimentin and glial fibrillary acidic protein and the chondroitin sulfate proteoglycans were identified by using an antibody against chondroitin sulfate side chains. Our results reveal three striking features of early thalamic development. First, there is a distinct population of glial fibrillary acidic protein-immunoreactive astrocytes (first seen at E30) that resides in the perireticular thalamic nucleus of the primordial internal capsule. These glial fibrillary acidic protein-immunoreactive astrocytes of the perireticular nucleus are transient and form a conspicuous feature of the early developing forebrain. They are first apparent well before any glial fibrillary acidic protein-immunoreactive astrocytes are seen in other regions of the thalamus (at about P8). Further, unlike in other thalamic regions, these peculiar perireticular astrocytes do not express vimentin before they express glial fibrillary acidic protein. Second, in the reticular thalamic nucleus, the radial glial cells express glial fibrillary acidic protein; they are the only ones to do so in the thalamus during development. The glial fibrillary acidic protein-immunoreactive radial glial cells of the reticular nucleus form a rather distinct band across the developing thalamus at these early stages (E30–P1). Finally, and preceding the expression of glial fibrillary acidic protein, the radial glial cells of the reticular nucleus, unlike those in other thalamic regions, are associated closely with the expression of chondroitin sulfate proteoglycans (E20–E30). Later (after E30), the expression of the chondroitin sulfate proteoglycans in the reticular nucleus declines sharply. The significance of this finding is related to the early organization of the cortico-fugal and cortico-petal pathways.  相似文献   

3.
Intermediate filament protein partnership in astrocytes.   总被引:20,自引:0,他引:20  
Intermediate filaments are general constituents of the cytoskeleton. The function of these structures and the requirement for different types of intermediate filament proteins by individual cells are only partly understood. Here we have addressed the role of specific intermediate filament protein partnerships in the formation of intermediate filaments in astrocytes. Astrocytes may express three types of intermediate filament proteins: glial fibrillary acidic protein (GFAP), vimentin, and nestin. We used mice with targeted mutations in the GFAP or vimentin genes, or both, to study the impact of loss of either or both of these proteins on intermediate filament formation in cultured astrocytes and in normal or reactive astrocytes in vivo. We report that nestin cannot form intermediate filaments on its own, that vimentin may form intermediate filaments with either nestin or GFAP as obligatory partners, and that GFAP is the only intermediate filament protein of the three that may form filaments on its own. However, such filaments show abnormal organization. Aberrant intermediate filament formation is linked to diseases affecting epithelial, neuronal, and muscle cells. Here we present models by which the normal and pathogenic functions of intermediate filaments may be elucidated in astrocytes.  相似文献   

4.
A study was undertaken of the diagnostic significance of the coexpression of intermediate filaments in fine needle aspirates of human tumors. Three types of coexpression were found: (1) true coexpression, in which tumor cells simultaneously express more than one intermediate filament protein; (2) pseudocoexpression, in which various tumor cell types from histogenetically different parts of a complex tumor show different results; and (3) false coexpression, in which tumor cells with one or two types of intermediate filaments are present together with benign cells expressing a different filament type. True coexpression of vimentin and keratin was documented in renal cell carcinomas, endometrial carcinomas, certain thyroid carcinomas and Hürthle cell adenomas. Coexpression of keratin and neurofilaments was seen in Merkel cell carcinomas, and coexpression of desmin and vimentin was found in leiomyosarcomas. Keratin, vimentin and neurofilament expression was seen in medullary thyroid carcinomas, and keratin, vimentin and glial fibrillary acidic protein expression was observed in pleomorphic adenomas of the salivary gland. Pseudocoexpression was noted in synovial sarcoma, epithelioid sarcoma, benign cystosarcoma phyllodes of the breast, teratocarcinoma, malignant granular cell tumor, progonoma, Wilms' tumor and triton tumor. Sources of false coexpression are also discussed.  相似文献   

5.
We reported recently that two glycosphingolipids (GSLs), globoside (Gb4) and ganglioside GM3, colocalized with vimentin intermediate filaments of human umbilical vein endothelial cells. To determine whether this association is unique to endothelial cells or to vimentin, we analyzed a variety of cell types. Double-label immunofluorescent staining of fixed, permeabilized cells, with and without colcemid treatment, was performed with antibodies against glycolipids and intermediate filaments. Globoside colocalized with vimentin in human and mouse fibroblasts, with desmin in smooth muscle cells, with keratin in keratinocytes and hepatoma cells, and with glial fibrillary acidic protein (GFAP) in glial cells. Globoside colocalization was detected only with vimentin in MDCK and HeLa cells, which contain separate vimentin and keratin networks. GM3 ganglioside also colocalized with vimentin in human fibroblasts. Association of other GSLs with intermediate filaments was not detected by immunofluorescence, but all cell GSLs were detected in cytoskeletal fractions of metabolically labelled endothelial cells. These observations indicate that globoside colocalizes with vimentin, desmin, kertain and GFAP, with a preference for vimentin in cells that contain both vimentin and keratin networks. The nature of the association is not yet known. Globoside and GM3 may be present in vesicles associated with intermediate filaments (IF), or bound directly to IF or IF associated proteins. The prevalence of this association suggests that colocalization of globoside with the intermediate filament network has functional significance. We are investigating the possibility that intermediate filaments participate in the intracellular transport and sorting of glycosphingolipids.  相似文献   

6.
Abstract: Tumor necrosis factor-α is a pluripotent cytokine that is reportedly mitogenic to astrocytes. We examined expression of the astrocyte intermediate filament component glial fibrillary acidic protein in astrocyte cultures and the U373 glioblastoma cell line after treatment with tumor necrosis factor-α. Treatment with tumor necrosis factor-α for 72 h resulted in a decrease in content of glial fibrillary acidic protein and its encoding mRNA. At the same time, tumor necrosis factor-α treatment increased the expression of the cytokine interleukin-6 by astrocytes. The decrease in glial fibrillary acidic protein expression was greater when cells were subconfluent than when they were confluent. Thymidine uptake studies demonstrated that U373 cells proliferated in response to tumor necrosis factor-α, but primary neonatal astrocytes did not. However, in both U373 cells and primary astrocytes tumor necrosis factor-α induced an increase in total cellular protein content. Treatment of astrocytes and U373 cells for 72 h with the mitogenic cytokine basic fibroblast growth factor also induced a decrease in glial fibrillary acidic protein content and an increase in total protein level, demonstrating that this effect is not specific for tumor necrosis factor-α. The decrease in content of glial fibrillary acidic protein detected after tumor necrosis factor-α treatment is most likely due to dilution by other proteins that are synthesized rapidly in response to cytokine stimulation.  相似文献   

7.
Cytoskeleton and vesicle mobility in astrocytes   总被引:2,自引:0,他引:2  
Exocytotic vesicles in astrocytes are increasingly viewed as essential in astrocyte-to-neuron communication in the brain. In neurons and excitable secretory cells, delivery of vesicles to the plasma membrane for exocytosis involves an interaction with the cytoskeleton, in particular microtubules and actin filaments. Whether cytoskeletal elements affect vesicle mobility in astrocytes is unknown. We labeled single vesicles with fluorescent atrial natriuretic peptide and monitored their mobility in rat astrocytes with depolymerized microtubules, actin, and intermediate filaments and in mouse astrocytes deficient in the intermediate filament proteins glial fibrillary acidic protein and vimentin. In astrocytes, as in neurons, microtubules participated in directional vesicle mobility, and actin filaments played an important role in this process. Depolymerization of intermediate filaments strongly affected vesicle trafficking and in their absence the fraction of vesicles with directional mobility was reduced.  相似文献   

8.
Standardized postembedding immunoelectron microscopy was performed to demonstrate glial fibrillary acidic protein (GFAP) and vimentin in individual intermediate filaments to determine the diagnostic value of demonstrating ultrastructural and immunophenotypic characteristics of intermediate filaments in routine brain biopsy specimens. Dual expression of GFAP and vimentin was observed in the astroblastoma and astrocytes of Alexander's disease. The antigen availability for vimentin, however, was too low to allow reliable assessment of the GFAP:vimentin ratio in individual intermediate filaments and/or filament bundles. In meningioma, only vimentin positive intermediate filaments were found. GFAP positive intermediate filaments were present in all other specimens except the oligodendroglial components of the mixed glioma, which were devoid of intermediate filaments. GFAP positivity in the filamentous periphery and electron-dense core of Rosenthal fibers was demonstrated. Technical and tissue processing factors had a significant effect on particle density values obtained for individual specimens. Although the number, distribution, and density of glial intermediate filaments varies in different astroglial entities, correlation of particle density values determined by immunoelectron microscopy with relative GFAP concentrations in different lesions requires utmost caution. Nevertheless, application of the postembedding approach to routinely fixed biopsy specimens indicated an association of different entities with the exclusive presence of GFAP and/or vimentin in individual intermediate filaments, thus emphasizing the diagnostic value of intermediate filament typing for pathological characterization.  相似文献   

9.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed predominantly in astrocytes. The study of its expression in the astrocyte lineage during development and in reactive astrocytes has revealed an intricate relationship with the expression of vimentin, another intermediate filament protein widely expressed in embryonic development. these findings suggested that vimentin could be implicated in the organization of the GFAP network. To address this question, we have examined GFAP expression and network formation in the recently generated vimentin knockout (Vim-) mice. We show that the GFAP network is disrupted in astrocytes that normally coexpress vimentin and GFAP, e.g., those of the corpus callosum or the Bergmann glia of cerebellum. Furthermore, Western blot analysis of GFAP protein content in the cerebellum suggests that posttranslational mechanisms are implicated in the disturbance of GFAP network formation. The role of vimentin in this process was further suggested by transfection of Vim- cultured astrocytes with a vimentin cDNA, which resulted in the normal assembly of the GFAP network. Finally, we examined GFAP expression after stab wound-induced astrogliosis. We demonstrate that in Vim- mice, reactive astrocytes that normally express both GFAP and vimentin do not exhibit GFAP immunoreactivity, whereas those that normally express GFAP only retain GFAP immunoreactivity. Taken together, these results show that in astrocytes, where vimentin is normally expressed with GFAP fails to assemble into a filamentous network in the absence of vimentin. In these cells, therefore, vimentin appears necessary to stabilize GFAP filaments and consequently the network formation.  相似文献   

10.
Mesencephalic cells from 13-day-old mouse embryos were cultured either in the presence of serum or in a conditioned chemically defined medium. The types of intermediate filaments present in the cells in these two conditions were analysed by immunocytochemical means. It was found that in the absence of serum more than 95% of the cells contained neurofilaments and were therefore neuronal in nature. The remaining 5% were all stained with an antibody against vimentin. In the presence of serum the proportion of vimentin-positive cells increased very much. Double labelling experiments were performed in order to further characterize the vimentin-containing cells. It was found that 30–50% of these cells also contained the glial fibrillary acidic protein and were therefore likely to be astrocytes. No cell ever reacted with antigalactocerebrosides or antibodies against fibronectin excluding the presence or fibroblasts or mature oligodendrocytes in these cultures.  相似文献   

11.
Using a monoclonal antibody, we have detected a high molecular weight muscle protein, co-localized and co-isolating with desmin. Searching a human cDNA database with partial amino acid sequences of the protein, we found a cDNA clone encoding a 1565-amino-acid polypeptide, identified as a mammalian (human) synemin, a member of the intermediate filament (IF) protein family. Immunoblotting showed the presence of a 180-kDa polypeptide in skeletal muscle and 180- and 200-kDa polypeptides in cardiac and smooth muscles. Interestingly, synemin was also found in myoepithelial cells, which have keratin filaments instead of desmin. Moreover, synemin was also found in astrocytes of optic nerves and non-myelin-forming Schwann cells, together with glial fibrillary acidic protein (GFAP) and vimentin. Blot overlays pointed to molecular interactions of synemin with desmin, vimentin, GFAP and keratin 5 and 6, but not with keratin 14. The experimental data also suggested a possible link with nebulin, a skeletal muscle protein. Purified synemin was coassembled with desmin in different molar ratios, and at 1:25, as typically found in vivo, IFs were formed which were comparable in length to desmin filaments. However, at molar ratios of 3:25 and 6:25, much shorter and irregular shaped filamentous polymers were generated. The fact that synemin is present in all four classes of muscle cells and a specific type of glial cells is indicative of important functions. Its incorporation may give structural and functional versatility to the IF cytoskeleton.This work was supported by grants from the Ministry of Education, Science, and Culture of Japan.  相似文献   

12.
Carbonic Anhydrase Immunostaining in Astrocytes in the Rat Cerebral Cortex   总被引:7,自引:3,他引:4  
Carbonic anhydrase is known to occur in the choroid plexus, oligodendrocytes, and myelin, and to be virtually absent from neurons, in the mammalian CNS; however, there is significant controversy whether it is also present in astrocytes. When brain sections from adult rats were stained for simultaneous immunofluorescence of carbonic anhydrase and the astrocyte marker glutamine synthetase, both antigens were detected in the same glial cells in the cortical gray matter, whereas the oligodendrocytes and myelinated fibers in and adjacent to the white matter showed immunofluorescence only for carbonic anhydrase. Some glial cells in the gray matter also showed double immunofluorescence for carbonic anhydrase and glial fibrillary acidic protein. These results indicate that there is carbonic anhydrase in some astrocytes in the mammalian CNS.  相似文献   

13.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

14.
The intermediate filament protein composition in glial cells of goldfish optic nerve differs from that found in glial cells of the goldfish spinal cord and brain. Brain and spinal cord glial cells contain glial fibrillary acidic protein (GFAP), whereas glial cells in the optic nerve contain ON3. The ON3 protein of the goldfish optic nerve was recently identified as the goldfish equivalent to the mammalian type II keratin 8 protein. In addition to the ON3 protein, the goldfish optic nerve also contains a 48-kDa protein. Immunoblotting experiments suggest that this protein is equivalent to the mammalian type I keratin 18 protein, which typically pairs with keratin 8 to form filaments. We show that these proteins are not specific to the optic nerve. The ON3 and 48-kDa proteins of the goldfish optic nerve share common antigenic properties with the predominant keratin pair expressed in the goldfish liver. These proteins are also expressed at low levels in the goldfish brain and spinal cord. In addition RNase protection assays and Northern blots indicate that the mRNA for the ON3 protein in optic nerve is identical to the message found in other goldfish tissues. The expression of ON3 was also examined in cultured glial cells from goldfish spinal cord and optic nerve and cultured fibroblast cells. Analysis of intermediate filament protein expression in cultured glial cells taken from goldfish spinal cord demonstrated the absence of GFAP in these cells and the expression of ON3. This protein was also the predominant intermediate filament protein of cultured optic nerve glial cells and fibroblasts. The differences in the expression of intermediate filament proteins in mammals and lower vertebrates are discussed. In addition, we discuss how the expression of a simple epithelial keratin pair in glial cells of the goldfish optic nerve may be associated with this system's capacity for continuous growth and regeneration.  相似文献   

15.
The immunohistological findings using antibodies to different intermediate filaments (glial fibrillary acidic protein, vimentin and two types of cytokeratin) and epithelial membrane antigen are described in 89 gliomas, 19 meningiomas and 8 choroid plexus papillomas (CPPs) from adult patients. All the patients had total or subtotal surgical excision of their tumours with clinical follow up for between 3 and 7 years. The immunohistological results were correlated with the histological features and patient survival. Tumours other than low grade astrocytomas, oligodendrogliomas and anaplastic ependymomas expressed one or more epithelial markers. This immunohistological evidence of epithelial differentiation in the absence of histological epithelial features in gliomas confirms that the two are not necessarily correlated. It is concluded that the expression of epithelial markers in some intradural tumours may reflect aberrant differentiation related to the degree of anaplasia in poorly differentiated astrocytomas and glioblastomas. All the patients with anaplastic epithelial marker-positive gliomas died within 1 year, whereas only 68% of patients with marker-negative tumours died within the follow-up period. In ependymomas and meningiomas, the expression of epithelial markers may reflect their histogenesis, while in malignant CPPs such expression could denote either their aberrant differentiation or histogenetic derivation.  相似文献   

16.
Seventy-five formalin-fixed and 18 alcohol-fixed pituitary adenomas were studied immunohistochemically using antibodies to keratin, vimentin, neurofilaments (NFs), glial fibrillary acidic protein, desmin, actin, S-100 protein and a variety of pituitary hormones. The pituitary adenoma cells were positive for keratin, vimentin and NFs (68 kDa and 160 kDa) and in a few instances there was co-expression of these three types of intermediate filaments (IMFs). The pattern of keratin-specific staining showed diffuse cytoplasmic or patchy paranuclear reactivity and of NF- or vimentin-specific staining showed fibrillar or patchy paranuclear reactivity. The patchy staining seemed to decorate the fibrous body. There was no correlation between the distribution of IMFs and pituitary hormones in pituitary adenomas except that melanocyte-stimulating-hormone-positive reactivity was limited to the NF-positive adenomas. The pattern of IMF staining did not depend on hormone production in adenomas.  相似文献   

17.
Abstract: The cellular functions of the intermediate filament family including glial fibrillary acidic protein (GFAP) are not well known yet beyond their roles as structural elements of cells. Expression of GFAP, which is specific in astrocytes and regulated developmentally, suggests its involvement in cell growth and differentiation of astrocytes. We transfected murine GFAP cDNA into a rat astrocytoma C6 cell line to assess the specific effect of GFAP on cells. Two stable GFAP-transfected cell lines, GFC6-5 and GFC6-6, exhibited a series of morphological and growth characteristics that distinguish them from their counterparts, i.e., NeoC6 cells transfected only with the neomycin-resistant gene, and native C6 cells. Both GFC6-5 and GFC6-6 cells showed elongated cell shapes with extended processes rich in GFAP, markedly suppressed cell growth, and decreased bromodeoxyuridine uptake. Western blot analysis revealed a remarkable increase of GFAP expression in GFC6-5 and GFC6-6 compared with that in NeoC6 and C6, in contrast to similar vimentin expression in all cell lines. The results indicate that the expression of GFAP has dramatic effects on cell morphology and cell growth suppression in C6 cells, suggesting that GFAP may function as a tumor suppressor in astrocytoma.  相似文献   

18.
In rat optic nerve, oligodendrocytes and type-2 astrocytes develop from a common (O-2A) progenitor cell. The first oligodendrocytes differentiate at birth, while the first type-2 astrocytes differentiate in the second postnatal week. We previously showed that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell. Here we provide evidence that the timing of type-2 astrocyte differentiation, by contrast, may depend on an inducing protein that appears late in the developing nerve. We show that extracts of 3- to 4-week-old, but not 1-week-old, rat optic nerve contain a protein (apparent Mr approximately 25,000) that induces O-2A progenitor cells in culture to express glial fibrillary acidic protein (GFAP), an astrocyte-specific marker in the rat central nervous system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号