首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of different psychotropic drugs on 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the medial basal hypothalamus has been studied by the use of a very sensitive radioenzymatic method. Apomorphine and haloperidol, which are known to respectively decrease and increase DOPAC levels in the caudate nucleus, fail to influence DOPAC level in the medial basal hypothalamus. Reserpine, which increases DOPAC level in the caudate nucleus, decreases it in the medial basal hypothalamus. Amphetamine decreases DOPAC level in the medial basal hypothalamus as it does in the caudate nucleus. These results suggest that DA metabolism in the medial basal hypothalamus is controlled by mechanisms different from those operating in other brain areas.  相似文献   

2.
Using the immunoperoxidase method, luteinizing hormone releasing hormone (LHRH) and somatostatin (SRIF) were demonstrated in the hypothalamus of fetal sheep. Both hormones were found in the perikarya at about day 60 of fetal life, i.e., at the end of the first half of pregnancy. Immunoreactive LHRH (irLHRH) perikarya were situated in the vicinity of the organum vasculosum of the lamina terminalis (OVLT), i.e., in the medial preoptic nucleus and in the nucleus of the diagonal band of Broca. They were scattered and generally sparse in these areas. In the earliest stages of fetal life (60, 75, 90 days of gestation) irSRIF perikarya grouped in the ventromedial nucleus and in the lateral preoptic nucleus, were very numerous. In the oldest fetuses (120 and 135 days of gestation) they had disappeared from these nuclei but could be found in some extrahypothalamic regions--the amygdala, septo-olfactory area and sometimes in the anterior periventricular zone of the hypothalamus. Neither irLHRH nor irSRIF material were stored in the nerve terminals of the external layer of the median eminence (ME) before day 75 of gestation. In all developmental stages examined, irLHRH material in the ME was very scarce whereas irSRIF material very aboundant.  相似文献   

3.
Summary Using the labeled and unlabeled immunoperoxidase methods, the distribution and concentration (1) of immunoreactive LHRH-material in the hypothalamus, and (2) of gonadotropic hormones in the adenohypophysis of the ewe were determined during various reproductive stages, including two phases of the estrous cycle, anestrus, lactation, and the state after ovariectomy. The concentration of LHRH-immunoreactive material varied in particular regions of the median eminence (ME) and was closely dependent on the physiological state. The immunoreactive material was most abundant in hypothalami of lactating animals, exceeding gradually the corresponding deposits in ovariectomized animals, in ewes during the 16th day of the estrous cycle (before ovulation), and in anestrous ewes. A severe depletion of LHRH from the rostral and central parts of the ME was observed 24h after ovulation. This depletion was accompanied by a degranulation of LH-and prolactin-producing cells in the adenohypophysis. It is postulated that LHRH is stored in the ME of the sheep in all examined endocrine stages. Only circumscribed regions of the ME take part in the cyclic release of LHRH during the ovulatory phase; this suggests a functional differentiation of the nerve terminals in this neurohemal area.  相似文献   

4.
Kim W  Jessen HM  Auger AP  Terasawa E 《Peptides》2009,30(1):103-110
The G-protein coupled receptor, GPR54, and its ligand, kisspeptin-54 (a KiSS-1 derived peptide) have been reported to be important players in control of LHRH-1 release. However, the role of the GPR54 signaling in primate reproductive senescence is still unclear. In the present study we investigated whether KiSS-1, GPR54, and LHRH-1 mRNA in the brain change after menopause in female rhesus monkeys using quantitative real-time PCR. Results indicate that KiSS-1, GPR54, and LHRH-1 mRNA levels in the medial basal hypothalamus (MBH) in postmenopausal females (28.3+/-1.1 years of age, n=5) were all significantly higher than that in eugonadal adult females (14.7+/-2.1 years of age, n=9), whereas KiSS-1, GPR54, and LHRH-1 mRNA levels in the preoptic area (POA) did not have any significant changes between the two age groups. To further determine the potential contribution by the absence of ovarian steroids, we compared the changes in KiSS-1, GPR54, and LHRH-1 mRNA levels in young adult ovarian intact vs. young ovariectomized females. Results indicate that KiSS-1 and LHRH-1 mRNA levels in the MBH, not POA, in ovariectomized females were significantly higher than those in ovarian intact females, whereas GPR54 mRNA levels in ovariectomized females had a tendency to be elevated in the MBH, although the values were not quite statistically significant. Collectively, in the primate the reduction in the negative feedback control by ovarian steroids appears to be responsible for the aging changes in kisspeptin-GPR54 signaling and the elevated state of the LHRH-1 neuronal system.  相似文献   

5.
Summary Using the immunoperoxidase method, the effect of the anterior deafferentations on the (1) LHRH-neuronal system in the hypothalamus and (2) gonadotropic cells in the adenohypophysis of the ewe were investigated. Two kinds of the anterior deafferentations were placed in the hypothalamus of cycling ewes. The first was performed at the level of caudal border of the chiasma opticum (CB deafferentation) and separated the medio-basal hypothalamus (MBH) from the anterior hypothalamic area (AHA). The second, was placed above the midline of the optic chiasma (MB deafferentation) and detached the AHA from the area praeoptica (AP). Estrous cycles and ovulation ceased in all CB-deafferentation. Immunocytochemical observations revealed a complete lack of LHRH-material both in the hypothalamic nuclei and in all parts of the median eminence (ME) and disappearance of LH-cells in the pituitary gland. In MB deafferented animals, only a diminished density of LHRH-material occurred in the rostral and central parts of the ME, but the ewes continued estrous cycles. Furthermore, numerous LHRH-axons and some LHRH-perikarya were visible in the regions of the AP and AHA. From these results the author is of the opinion, that in the ewe, principally AHA, but not MBH, retains the ability to produce LHRH. Difficulties in staining LHRH-perikarya suggest that in this species LHRH may be synthesized in an immunologically inactive (prohormonal) form.  相似文献   

6.
The ovarian steroid estradiol (E) has been found to increase both receptor affinity and release of the neuropeptide oxytocin (OT) in plasma membrane preparations. Therefore, we hypothesized that E conjugated to bovine serum albumin at position 6 (E-6-BSA) would increase behavioral responsiveness to OT. Preliminary results showed that 200 ng/microl of E-6-BSA increased sexual receptivity slightly, but not significantly. Therefore, this dose was used as a subthreshold dose to test whether it would increase sexual responsiveness when infused in combination with 100 ng/microl OT. After recovery from cannula implantation surgery animals were injected with 0.5 microg E benzoate daily for 3 days before testing. On the fourth day, after a baseline preinfusion test rats were infused bilaterally with E-6-BSA alone or with OT, OT with BSA, or conjugated progesterone, luteinizing hormone-releasing hormone equimolar to OT alone, or with E-6-BSA or conjugated progesterone alone. When infused into either the medial preoptic area-anterior hypothalamus or the medial basal hypothalamus the combination of OT and E-6-BSA significantly increased sexual receptivity over receptivity after artificial cerebrospinal fluid control infusions. Neither bilateral infusions of OT in combination with conjugated progesterone nor E-6-BSA in combination with luteinizing hormone-releasing hormone enhanced sexual receptivity. Results presented here strongly support the conclusion that some of the effects that E has in sensitizing brain systems to the facilitating effects of OT occur at the membrane level in the medial preoptic area-anterior hypothalamus and medial basal hypothalamus.  相似文献   

7.
Sequential bleeding and push-pull perfusion of the hypothalamus were used to characterize luteinizing hormone (LH) and LH-releasing hormone (LHRH) release in ovariectomized (OVX) ewes after injection of corn oil or estradiol benzoate (EB). Push-pull cannulae were surgically implanted into the stalk median eminences of 24 OVX ewes. Seven to 14 days later each of 20 animals was given an i.m. injection of 50 micrograms EB. Blood samples and push-pull perfusate were collected at 10-min intervals for 6-12 h beginning 12-15 h after EB injection. Four OVX ewes were given i.m. injections of corn oil 7 days after implantation of push-pull cannulae. Blood samples and push-pull perfusate were collected at 10-min intervals for 4 h between 18 and 22 h after injection of corn oil. Luteinizing hormone remained below 2 ng/ml throughout most of the sampling periods in 9 of 20 EB-treated ewes. In 5 of these 9 LHRH also was undetectable, whereas in 4 LHRH was detectable (1.84 +/- 0.29 pg/10 min), but did not increase with time. Preovulatory-like surges of LH occurred in 11 EB-treated ewes, but LHRH was undetectable in 5. In 4 of 6 ewes showing LH surges and detectable LHRH, sampling occurred during the onset of the LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
Careful review of the literature demonstrates conflicting results concerning the ability of the deafferented medial basal hypothalamus to support gonadotropin release in the rat and thus one may question the existence of LH-RH neurons in the medial basal hypothalamus. The direct search for the LH-RH perikarya in the rat hypothalamus has not settled the question of whether these releasing hormone neurons are located in the medial basal hypothalamus. Most investigators do agree that following complete hypothalamic deafferentation there is a reduction of the immunoassayable LH-RH in the medial basal hypothalamus; however, these results do not necessarily prove that LH-RH originates outside the hypothalamus. It is argued that the completely deafferented medial basal hypothalamus may be so altered by the deafferentation procedure that it may be inadequate as a means to study neuroendocrine function.  相似文献   

11.
Leptin, the product of the ob gene, has been proposed as a metabolic signal that regulates the secretion of GnRH/LH. This may be critical during prepubertal development to synchronize information about energy stores and the secretion of GnRH/LH. This study aimed to assess the effect of food restriction on the episodic secretion of leptin and LH in young female sheep. Five 20-week-old prepubertal females were fed a low-level diet for 10 weeks to maintain the body weight. Control females of the same age received food ad libitum. Blood samples were collected at 10-min intervals for six hours at 20, 26, and 30 weeks of age, and plasma leptin, LH, insulin and cortisol concentrations were measured. In the control group, no changes were found in pulsatile LH secretion characteristics. Mean LH concentrations and LH amplitude were lower in the food-restricted group than in the control group at 26 and 30 weeks of age. In the control group, pulsatile leptin secretion did not change. When compared to control lambs of the same age, the food-restricted group showed lower mean plasma leptin concentrations, pulse amplitude and plasma insulin levels, after 6 weeks of restriction (week 26), although by week 30, plasma leptin concentrations and plasma insulin rose to those of the control group. Leptin pulse frequency did not change, nor did mean plasma levels of insulin in the control group at any age studied. Mean plasma concentration of cortisol did not change within or between groups. These data suggest that plasma leptin concentrations may not be associated with the onset of puberty under regular feeding and natural photoperiod in lambs. Prolonged food restriction, however, induces metabolic adaptations that allow an increase of leptin during the final period, probably related to the development of some degree of insulin resistance.  相似文献   

12.
The role of postnatal ovary in the maturation of estradiol (E2)-induced luteinizing hormone (LH) and prolactin (PRL) surges was examined in female rats of Wistar-Imamichi strain. Animals were bilaterally ovariectomized at 24 h after birth, 1 week (w), 2 w, 3 w, 4 w or 6 w of age. At about 10 w of age, every group was primed with estradiol benzoate (E2B) for two days, and on the third day was decapitated at either 0900 h or 1900 h. Anterior pituitary (AP) LH and PRL content was determined in every group of no E2B treatment. Surge-like secretions of LH and PRL were observed at 1900 h, only in rats ovariectomized on or after 4 w of age. AP LH and PRL content was the higher, as ovariectomy was delayed. These results indicate that postnatal ovary is necessary for the maturation of E2-induced LH and PRL surges. Such an effect of ovary is mediated at least by its stimulation of AP LH and PRL content.  相似文献   

13.
Vitamin E, a dietary factor, is essential for reproduction in animals. It is an antioxidant present in all mammalian cells. Previously, we showed that ascorbic acid (AA) acted as an inhibitory neurotransmitter in the hypothalamus by scavenging nitric oxide (NO). Earlier studies have shown the antioxidant synergism between vitamin E and ascorbic acid (AA). Therefore, it was of interest to evaluate the effect of vitamin E on luteinizing hormone-releasing hormone (LHRH) and AA release. Medial basal hypothalami from adult male rats of the Sprague Dawley strain were incubated with Krebs-Ringer bicarbonate buffer or graded concentrations of a water soluble form of vitamin E, tocopheryl succinate polyethylene glycol 1000 (TPGS, 22-176 microM) for 1 hr. Subsequently, the tissues were incubated with vitamin E or combinations of vitamin. E + N-methyl-D-aspartic acid (NMDA), an excitatory amino acid for 30 min to study the effect of prior and continued exposure to vitamin E on NMDA-induced LHRH release. AA and LHRH released into the incubation media were determined by high-performance liquid chromatography and radioimmunoassay, respectively. Vitamin E stimulated both LHRH and AA release. The minimal effective concentrations were 22 and 88 microM, respectively. NMDA stimulated LHRH release as previously shown and this effect was not altered in the combined presence of vitamin E plus NMDA. However, AA release was significantly reduced in the combined presence of vitamin E plus NMDA. To evaluate the role of NO in vitamin E-induced LHRH and AA release, the tissues were incubated with vitamin E or combinations of vitamin E + NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NO synthase. NMMA significantly suppressed vitamin E-induced LHRH and AA release indicating a role of NO in the release of both LHRH and AA. The data suggest that vitamin E plays a role in the hypothalamic control of LHRH and AA release and that the release is mediated by NO.  相似文献   

14.
15.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

16.
The effects of third ventricular injection of beta-endorphin (beta-EP) on spontaneous, brain stimulation-induced and estrogen-induced LH surges were studied in the adult female rat. It was found that beta-EP blocked the preovulatory surge of LH release and ovulation, while it did not affect LH release in response to LH-RH injection. The site of the beta-EP blockade of ovulation was proved to be in the brain. Beta-EP completely blocked ovulatory LH release induced by the electrochemical stimulation of the medial amygdaloid nucleus and medial septum-diagonal band of Broca, but failed to block ovulation due to the stimulation of the medial preoptic area (MPO) or median eminence, though serum LH levels after the MPO stimulation were inhibited by beta-EP. In the spayed rats treated with estradiol benzoate (EB) on Day 1 and 4 of experiment, beta-EP given on Day 5 blocked the LH surge that normally occurred on that day and led to a compensatory surge of LH on the following day. Moreover, the LH surge on Day 5 was inhibited by beta-EP given either on Day 1 or Day 4. Present data suggest that beta-EP may act in inhibiting the preovulatory LH surges not only by suppressing the preoptic-tuberal LH-RH activities but also by affecting the initiation and development of stimulatory feedback of estrogen in the central nervous system.  相似文献   

17.
18.
This study investigated whether the role of endogenous opioid peptides in the suppression of LH secretion during seasonal anestrus in the sheep changes with age. The experimental approach was to determine the effect of blockade of opioid receptors with naloxone on LH secretion at different times of year within the anestrous season, and to compare responses between seasonally anestrous sheep of different ages. Sheep, all past the normal age of puberty, were ovariectomized before the study and treated s.c. with estradiol implants to provide a fixed estradiol feedback signal. One-year-old females responded to naloxone with a rapid increase in LH pulse frequency in the early (April) and late (August) phases of their first anestrous season. This response was similar to that previously found in prepubertal female sheep. Only 5 of the 8 females responded to the same naloxone challenge in mid anestrus (June), suggesting that the contribution of opioid pathways to the inhibition of LH secretion at this time of year is not necessarily the same as that in early and late anestrus. None of the older anestrous sheep (greater than or equal to 2 yr) responded to naloxone in June, indicating age-related changes in the role of endogenous opioid mechanisms in the inhibition of LH secretion. Ovary-intact mature sheep did not respond to naloxone, in contrast to our previous observations in intact prepubertal females. We infer that the neural mechanisms underlying the superficially similar hypogonadotropic states that occur during the prepubertal period, first anestrous season, and later anestrous seasons are not identical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号