首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It has been known since the 1970s that an increased consumption of n-3 long chain polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid has cardioprotective effects. Epidemiological studies have reported that this effect is due to the prevention of the arrhythmias responsible for sudden cardiac death. Mechanistically, different hypotheses have been put forward to give an explanation. Among them, there are a direct effect of the polyunsaturated fatty acids on ion channels and/or a modification of the regulation of ion channels by protein kinase C’s.  相似文献   

3.
We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.  相似文献   

4.
J. P. Dubacq 《Protoplasma》1973,76(3-4):373-385
Summary YoungAcetabularia mediterranea cells without cap have a fatty acid composition different from other green algae currently used for biological research. They contain important quantities of palmitic and oleic acid, but are very poor in polyunsaturated fatty acids such as linoleic and linolenic acid. (These polyunsaturated fatty acids are predominant in higher plants and many green algae.)  相似文献   

5.
Heating oils and fats may lead to cyclization of polyunsaturated fatty acids, especially those showing multiple double bonds like linolenic acid. Cyclohexenyl and cyclopentenyl fatty acids are subsequently present in some edible oils and these were suspected to induce metabolic disorders. When fed during gestation in the rat, cyclic fatty acids were historically reported to induce high mortality of the neonates. Nevertheless, none of these studies have been performed with cyclic fatty acids fed as triacylglycerols, limiting the nutritional value of the conclusions. Therefore, we assessed the toxicity of a diet containing 0.7% of cyclic fatty acids fed as triacylglycerols during gestation and the first days of life in the rat. In this work, we report no deleterious effect of cyclic fatty acids in the mothers and neonates. However, cyclic fatty acids induced a tremendous insulinopenia in the mothers and pups that was associated with the reduction of food intake in the gestating females. Such a finding may be a plausible explanation for the adverse effects of cyclic fatty acids observed previously with higher doses of cyclic fatty acids. Based on present data, on previous ones showing elimination of cyclic fatty acids, and considering their low amounts in the diet, we suggest that cyclic fatty acids formed from cyclization of linolenic acid are not a major concern for human safety.  相似文献   

6.
Neuronal death generally involves, directly or indirectly, free radical attack and peroxidation. Targets are nucleic acids, proteins, the cytoskeleton, the extracellular matrix and especially membrane polyunsaturated fatty acids. a) One example for the fundamental role of fatty acids. Dietary fatty acids, and more particularly essential polyunsaturated fatty acids, have a direct influence on the composition of cerebral membranes, and hence on their functioning. Each of the two series of polyunsaturated fatty acids plays a particular role. In animals, a deficiency in linolenic acid causes serious perturbations in the nervous system. In fact, feeding animals with oils that have a low n-3 content leads to severe abnormalities in the composition of membranes, both of the brain and other organs. The rate of recovery from these anomalies is extremely slow in the brain, but rapid in the liver. Compared to certain other organs, the nervous system is neither protected against deficiency nor has it priority in the satisfaction if its needs. A decrease in acids of the linolenic series in the membranes results in a 40% reduction of Na-K-ATPase in nerve endings and a 20% reduction in 5'-nucleotidase. It also leads to anomalies in the electroretinogram which disappear with age. This deficiency in linolenic acid has little effect on motor function and disturbes activity and emotivity only slightly, but it seriously affects learning tasks. The presence of linolenic acid in the diet confers greater resistance to certain neurotoxic substances (triethyl lead, for example). Fatty acids essential for the brain could be those with very long chains. They are probably synthesized in the liver from linolenic and linoleic acids. They can also be supplied directly by food. However, if the diet contains a large proportion of very long chain fatty acids (fish oils), the lipid composition of all organs, including the brain, is altered. During the period of brain development there is a linear relation between the polyunsaturated fatty acid content of the brain and that of the diet. The requirement in linolenic acid is 200 mg/100 g of diet (0.4% of calories). That of linoleic acid is 1,200 mg/100 g of diet (2.4% of calories). b) Peroxidation of polyunsaturated fatty acids. Arachidonic acid is released by lysis of phospholipids (it is directly toxic), its peroxidized derivatives are extremely toxic. Peroxidation of membrane lipids alters enzymatic activity, the relationship between receptor and ligand, transport, and the symmetry of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Altered Fatty Acid Distribution in Mutants of Neurospora crassa   总被引:5,自引:2,他引:3       下载免费PDF全文
Morphological mutants of Neurospora with decreased levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduced nicotinamide ad enine dinucleotide (NADH) contained only 20% as much of a polyunsaturated fatty acid (linolenic acid) as the wild type in both the phospholipid and neutral lipid fractions. There was an excellent correlation between linolenic acid levels and morphological appearance as a function of total NADPH content, but no correlation with NADH content. The linolenic acid deficiency was balanced by a relative increase in the amounts of the less unsaturated fatty acids (oleic and linoleic acids), but the level of three other fatty acids did not appear to be changed. This accumulation of these two precursors suggests that the NADPH deficiency preferentially affected the final desaturation step, i.e., the conversion of linoleic to linolenic acid. The NADPH needed for this reaction in vivo was probably generated by the pentose phosphate shunt, since mutations affecting the shunt lead to the decreased levels of linolenic acid. It is not clear whether the changes in fatty acid distribution affect the morphogenesis of Neurospora, or if these changes are just part of the NADPH-deficiency syndrome.  相似文献   

8.
The light absorption of ozone in an air stream allowed the monitoring of reactions of ozone with unsaturated fatty acids in solution. The kinetics for the reaction of ozone with linolenic acid was found to be of a pseudo-first-order after the first few minutes and did not vary with the concentration of ozone introduced into the solution. The reaction of ozone with linolenic acid in solution was found to be exceedingly rapid.When various combinations of polyunsaturated fatty acids were injected simultaneously, they reacted independently. The stoichiometry of ozone reacted to number of double bonds present in the fatty acid was one for mono- and diunsaturated; however, for triunsaturated fatty acid the stoichiometry was about 0.70.Malondialdehyde was produced upon the reaction of ozone with di- and triunsaturated fatty acids, as shown by both the thiobarbituric acid test and the characteristic UV absorption of malondialdehyde in solution. The true yield of malondialdehyde for the reaction of polyunsaturated fatty acids with ozone was found to be about 2%. In addition, other species, absorbing at 290–300 nm, were formed in solution during ozonolysis.  相似文献   

9.
10.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

11.
PURPOSE OF REVIEW: The purpose is to evaluate recent findings concerning dietary fats and the risk of coronary heart disease. Monounsaturated fatty acids are often regarded as healthy, and many have recommended their consumption instead of saturated fatty acids and polyunsaturated fatty acids. Support for the benefits of monounsaturated fatty acids comes largely from epidemiological data, but they have not been an isolated, single variable in such studies. Beneficial effects on the plasma lipid profile and LDL oxidation rates have also been identified. More recent findings have questioned the impact of suspected beneficial effects on coronary heart disease, indicating that studies with more conclusive endpoints are needed. RECENT FINDINGS: Human dietary studies often produce conflicting results regarding the effects of monounsaturated and polyunsaturated fatty acids on the plasma lipid profile. Monounsaturated and polyunsaturated fatty acids both appear to reduce total and LDL-cholesterol compared with saturated fatty acids; however, the effect on HDL is less clear. Lowered HDL levels in response to low-fat or polyunsaturated fatty acid diets and the decreased protection from oxidation of polyunsaturated fatty acid-enriched LDL may not indicate increased coronary heart disease risk. Several lines of evidence also suggest that polyunsaturated fatty acids may protect against atherosclerosis. SUMMARY: Recommendations to substitute monounsaturated fatty acids for polyunsaturated fatty acids or a low-fat carbohydrate diet seem premature without more research into the effects on the development of atherosclerosis. Current opinions favoring monounsaturated fatty acids are based on epidemiological data and risk factor analysis, but are questioned by the demonstrated detrimental effects on atherosclerosis in animal models.  相似文献   

12.
Neuroblastoma cell cultures took up linoleic and linolenic acids at approximately equal rates, and incorporated them into a variety of lipid fractions, principally cellular phospholipids. Linoleic acid was preferentially incorporated into choline phosphoglycerides, while most of the radioactivity derived from linolenic acid entered ethanolamine phosphoglycerides. There was no evidence for direct transfer of fatty acids between these two phosphoglyceride fractions. When, after the addition of cytosine arabinoside, cell division was arrested, the entry of labelled fatty acids into ethanolamine and serine phosphoglycerides was reduced, suggesting that these lipids are involved in the formation of new cell membranes. In the ethanolamine phosphoglyceride fraction, phosphatidal ethanolamine (plasmalogen) was the principal acceptor for the higher polyunsaturated fatty acids of the φ 3 series. The ratio of labelled fatty acids entering ethanolamine plasmalogens to that entering ethanolamine phosphoglycerides increased following the addition of cytosine arabinoside, suggesting plasmalogens to be involved in formation of cell processes. The first step in the metabolism of both linoleic and linolenic acid was the addition of a two-carbon unit. Conversion of linoleic acid to higher polyunsaturated fatty acids was slower than the conversion of linolenic acid to its higher analogues. This contrasted with the behaviour of dissociated cultures of normal brain cells which were able to form higher analogues of linoleic and linolenic acids at nearly equal rates.  相似文献   

13.
Heating oils and fats may lead to cyclization of polyunsaturated fatty acids, as for example linolenic acid. Cyclohexenyl and cyclopentenyl fatty acids are subsequently present in some edible oils and these are suspected to induce metabolic disorders. In a previous experiment using [1-14C] labeled molecules, we published that these cyclic fatty acids are beta oxidized to the same extent as linolenic acid, at least for the first cycle of beta oxidation. However, it is possible that the presence of a ring could alter the ability of the organism to fully oxidize the molecule. In order to test this hypothesis, we assessed the oxidative metabolism of cyclic fatty acids carrying a 14C atom at the vicinity of the ring. For this purpose, rats were force-fed from 1.1 to 1.3 MBq of a representative fraction of dietary cyclohexenyl cyclic fatty acid monomers of [9-14C] 9-(6-propyl-cyclohex-3-enyl)-non-8-enoic acids and 14CO2 production was monitored for 24h. The animals were then necropsied and the radioactivity was determined in different tissues. No consistent radioactivity was recovered as 14CO2 24h after administration of the molecules. Sixty percent of the radioactivity was recovered in the urine and 30% in the gastrointestinal tract. By combining our previous data on the oxidation of [1-14C] cyclic fatty acids and the present results, we suggest that cyclohexenyl fatty acids are first beta oxidized in a similar way as linolenic acid and that the remaining molecule carrying the ring is detoxified and eliminated in the urine and feces.  相似文献   

14.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

15.
PURPOSE OF REVIEW: There continues to be considerable interest in the modulating effect of dietary lipids on immune and inflammatory responses. Although controversy still exists in research in this area, new concepts and approaches have emerged providing useful suggestions. Analysis of the recent findings will help in understanding certain paradoxical findings as well as introducing new strategies to guide future studies. RECENT FINDINGS: The tissue polyunsaturated fatty acid composition was found to be correlated with changes in certain indices of immune function in individuals consuming habitual diets. It seems that individuals or animals with disordered immune systems are more reactive to polyunsaturated fatty acid supplementation, and genetic variation is also a determinant. N-3 polyunsaturated fatty acids were shown to reduce both resistance to bacterial infection and host survival. The studies on other non-classic fatty acids also demonstrated interesting findings. A proposed immuno-enhancing effect of conjugated linoleic acid has not been confirmed by studies and even an adverse effect has been implied. Trans fatty acids have been shown to increase the production of inflammatory cytokines, which may contribute to their pro-atherogenic property. SUMMARY: Current data suggest that the intake of polyunsaturated fatty acids, particularly n-3 polyunsaturated fatty acids, can modulate immune and inflammatory responses, although a discrepancy is still present. Some recent studies have provided useful information explaining possible underlying reasons. Factors such as genetic variation, health status, disease, immune response stage, stimulation type, and possibly age, all contribute to the responsiveness to polyunsaturated fatty acid supplementation in terms of immune function.  相似文献   

16.
When polyunsaturated fatty acids (PUFAs) in biomembrane are peroxidized, a great diversity of aldehydes is formed, and some of which are highly reactive. Thus they are thought to have biological impacts in stressed plants; however, the detailed mechanism of generation and biochemical effects are unknown. In this study, we show that chloroplasts are major organelles in which malondialdehyde (MDA) generated from peroxidized linolenic acid modifies proteins in heat-stressed plants. First, to clarify the biochemical process of MDA generation from PUFAs and its attachment to proteins, we carried out in vitro experiments using model proteins (BSA and Rubisco) and methylesters of C18 PUFAs that are major components of plant biomembrane. Protein modification was detected by Western blotting using monoclonal antibodies that recognize MDA binding to proteins. Results showed that peroxidation of linolenic acid methylester by reactive oxygen species was essential for protein modification by MDA, and the MDA modification was highly dependent on temperature, leading to a loss of Rubisco activity. When isolated spinach thylakoid membrane was peroxidized at 37 degrees C, oxygen-evolving complex 33kDa protein (OEC33) was modified by MDA. These model experiments suggest that protein modification by MDA preferentially occurs under higher temperatures and oxidative conditions, thus we examined protein modification in heat-stressed plants. Spinach plants were heat-stressed at 40 degrees C under illumination, and modification of OEC33 protein by MDA was detected. In heat-stressed Arabidopsis plants, light-harvesting complex protein was modified by MDA under illumination. This modification was not observed in linolenic acid-deficient mutants (fad3fad7fad8 triple mutant), suggesting that linolenic acid is a major source of protein modification by MDA in heat-stressed plants.  相似文献   

17.
The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.  相似文献   

18.
The availability of the fatty acids which are precursors of prostaglandins is affected by dietary intake. We have studied, in particular, the effects of dietary intake of lipids with different amounts of precursor and derivative fatty acids on the synthesis of prostaglandin E2 (PGE2) in rat liver, kidney and lung. Fifteen-month-old rats were fed for 3 months diets containing different amounts of oleic, linoleic, alpha linolenic, gamma linolenic and stearidonic acids. The fatty acid compositions of total phospholipids and prostaglandin E2 levels of liver, kidney and lung were investigated. In the organs studied, the intake of lipids at different amount of precursor/derivative fatty acids caused variations in the fatty acid composition of phospholipids. PGE2 showed different values which did not seem directly affected by tissue availability of arachidonate but by the effect of dietary lipids on the metabolic pool of polyunsaturated fatty acids (PUFAs).  相似文献   

19.
The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)-.2, Br-.2 and N.3, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented that O-.2 may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)-.2 and Br-.2 with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10(7) mol-1 dm3 s-1, below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation.  相似文献   

20.
The class of long chain polyunsaturated fatty acids known as omega-3 are believed to be involved in prevention of a number of human afflictions. The mode of action for two of the most common omega-3 fatty acids, linolenic 18:3 delta 9,12,15 and docosahexaenoic 22:6 delta 4,7,10,13,16,19 (DHA), is not known. One suggestion is that they may be incorporated into membranes and there provide some specific function. Here we compare the effects of DHA and its metabolic precursor linolenic acid on the membrane properties of fluidity, fusion and permeability. The fatty acids were investigated as both free fatty acids and mixed chain 18:0, 18:3 and 18:0, 22:6 phosphatidylcholines (PCs). Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and a series of anthracene stearic acid probes indicates 20 mol% incorporation of either fatty acid into dipalmitoylphosphatidylcholine bilayers broadens and depresses the temperature of the phase transition, but has almost no effect on fluidity in the liquid crystalline state. Similar fluidity was also observed in the liquid crystalline bilayers of the mixed chain PCs using the same set of fluorescent fatty acid probes. In contrast, DHA as a free fatty acid or as part of a mixed chain PC, causes a much greater enhancement than linolenic acid of the rates of fusion and permeability as monitored by fluorescence resonance energy transfer and aqueous compartment mixing (fusion) and by lipid vesicle swelling in isotonic erythritol, (permeability). These experiments establish a clear distinction between the effects of linolenic acid and DHA in membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号