共查询到20条相似文献,搜索用时 0 毫秒
1.
le Noble F Moyon D Pardanaud L Yuan L Djonov V Matthijsen R Bréant C Fleury V Eichmann A 《Development (Cambridge, England)》2004,131(2):361-375
Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1. 相似文献
2.
Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation 总被引:3,自引:0,他引:3
Wosnitza M Hemmrich K Groger A Gräber S Pallua N 《Differentiation; research in biological diversity》2007,75(1):12-23
Recent research findings postulate that adipocytes and endothelial cells (EC) may share a common progenitor. However, the interlinking pathways between adipose tissue and endothelium, and the differentiation potential of cells to convert from one tissue into the other via progenitor cells have not been elucidated and are therefore the focus of this study. Stromal vascular fraction (SVF) cells were isolated from liposuction aspirates or excised adipose tissue and separated into CD31+ and CD31- populations by magnet-assisted cell sorting. Differentiation to fat tissue was induced in both CD31 fractions after expansion by insulin, dexamethasone, isobutylmethylxanthine, triiodothyronine, pioglitazone, and transferrin. Differentiation was assayed enzymatically and by cell counting. Maturation to endothelium was performed with vascular endothelial growth factor (VEGF), insulin-like growth factor-1 plus 2% fetal calf serum, and confirmed by flow cytometry and tube formation assays on Matrigel. Our results show that the SVF contains a CD31-, S100+ cell type that can differentiate into adipocytes and EC. The SVF also comprises CD31+ cells that, although they have an endothelial phenotype, can be converted into mature adipocytes. These findings demonstrate the potency of SVF cells to perform both adipogenic and endothelial differentiation. Further, they reveal the plasticity of mature cells of mesenchymal origin to undergo conversion from endothelium to adipose tissue and vice versa. 相似文献
3.
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae. Importantly, BMP ligands are broadly expressed throughout embryos but BMP signaling activation region is spatially defined by precisely regulated expression of BMP antagonists. These discoveries provide insight into how signaling, both positive and negative, regulate vascular patterning. This review also illustrates similarities of early arterial patterning along the embryonic midline in amniotes both avian and mammalians including human, evolutionarily specialized from non-amniotes such as fish and frog. 相似文献
4.
J L Duband S Dufour K Hatta M Takeichi G M Edelman J P Thiery 《The Journal of cell biology》1987,104(5):1361-1374
In avian embryos, somites constitute the morphological unit of the metameric pattern. Somites are epithelia formed from a mesenchyme, the segmental plate, and are subsequently reorganized into dermatome, myotome, and sclerotome. In this study, we used somitogenesis as a basis to examine tissue remodeling during early vertebrate morphogenesis. Particular emphasis was put on the distribution and possible complementary roles of adhesion-promoting molecules, neural cell adhesion molecule (N-CAM), N-cadherin, fibronectin, and laminin. Both segmental plate and somitic cells exhibited in vitro calcium-dependent and calcium-independent systems of cell aggregation that could be inhibited respectively by anti-N-cadherin and anti-N-CAM antibodies. In vivo, the spatio-temporal expression of N-cadherin was closely associated with both the formation and local disruption of the somites. In contrast, changes in the prevalence of N-CAM did not strictly accompany the remodeling of the somitic epithelium into dermamyotome and sclerotome. It was also observed that fibronectin and laminin were reorganized secondarily in the extracellular spaces after CAM-mediated contacts were modulated. In an in vitro culture system of somites, N-cadherin was lost on individual cells released from somite explants and was reexpressed when these cells reached confluence and established intercellular contacts. In an assay of tissue dissociation in vitro, antibodies to N-cadherin or medium devoid of calcium strongly and reversibly dissociated explants of segmental plates and somites. Antibodies to N-CAM exhibited a smaller disrupting effect only on segmental plate explants. In contrast, antibodies to fibronectin and laminin did not perturb the cohesion of cells within the explants. These results emphasize the possible role of cell surface modulation of CAMs during the formation and remodeling of some transient embryonic epithelia. It is suggested that N-cadherin plays a major role in the control of tissue remodeling, a process in which N-CAM is also involved but to a lesser extent. The substratum adhesion molecules, fibronectin and laminin, do not appear to play a primary role in the regulation of these processes but may participate in cell positioning and in the stabilization of the epithelial structures. 相似文献
5.
Notch signaling is required for arterial-venous differentiation during embryonic vascular development 总被引:30,自引:0,他引:30
Lawson ND Scheer N Pham VN Kim CH Chitnis AB Campos-Ortega JA Weinstein BM 《Development (Cambridge, England)》2001,128(19):3675-3683
Recent evidence indicates that acquisition of artery or vein identity during vascular development is governed, in part, by genetic mechanisms. The artery-specific expression of a number of Notch signaling genes in mouse and zebrafish suggests that this pathway may play a role in arterial-venous cell fate determination during vascular development. We show that loss of Notch signaling in zebrafish embryos leads to molecular defects in arterial-venous differentiation, including loss of artery-specific markers and ectopic expression of venous markers within the dorsal aorta. Conversely, we find that ectopic activation of Notch signaling leads to repression of venous cell fate. Finally, embryos lacking Notch function exhibit defects in blood vessel formation similar to those associated with improper arterial-venous specification. Our results suggest that Notch signaling is required for the proper development of arterial and venous blood vessels, and that a major role of Notch signaling in blood vessels is to repress venous differentiation within developing arteries. Movies available on-line 相似文献
6.
P de Paz Cabello M Fernandez C A Chamorro J G Fernandez J M Villar 《Acta anatomica》1988,132(1):12-16
The neuroectodermal cells of chick embryos have been analyzed during neurulation by stereological and morphometrical ultrastructural methods in an attempt to describe their cytometric evolution. A profound change of cellular form coefficient was observed which is related to the typical process of columnarization of these cells. At stages 7 and 8, the nucleus appeared round in shape, probably due to a loss of pressure of the vitelline inclusions. In this sense, the volume density of these inclusions falls during this period. There was also a significant increase of the nuclear surface density, the significance of which is discussed on the basis of the nucleo-cytoplasmic interchanges and the differentiation process. At the same time, an increase in the number of mitochondria was observed, which is related to the neural folding process. Simultaneously, the amount of rough endoplasmic reticulum increases, presumably related to the remarkable changes of the embryonic extracellular matrix. 相似文献
7.
8.
DNA-dependent RNA polymerase was analysed during the terminal differentiation stages of avian erythrocytes. It was found that the mature duck erythrocyte, although quiescent in RNA synthesis, contains clearly measurable quantities of RNA polymerase B (or II). Immature polychromatic erythrocytes, derived from anemic ducks and actively synthesizing hemoglobin mRNA, additionally contain significant amounts of RNA polymerase A (or I) and C (or III) previously not detected in these cells. These latter classes of enzymes, although present, are apparently not engaged in RNA synthesis in polychromatic erythrocytes. 相似文献
9.
Geoffrey A. Manley Otto Gleich Alexander Kaiser Jutta Brix 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,164(3):289-296
Summary Mammals and birds have independently developed different populations of sensory cells grouped across the width of their auditory papillae. Although in mammals there is clear evidence for disparate functions for the two hair-cell populations, the different anatomical pattern in birds has made comparisons difficult. In two species of birds, we have used single-fibre staining techniques to trace physiologically-characterized primary auditory nerve fibres to their peripheral synapses. As in mammals, acoustically-active afferent fibres of these birds innervate exclusively the neurally-lying group of hair cells in a 11 relationship, suggesting important parallels in the functional organization of the auditory papillae in these two vertebrate classes. In addition, we found a strong trend of the threshold to acoustic stimuli at the characteristic frequency across the width of the avian papilla.Abbreviations
IHC
inner hair cell(s)
-
OHC
outer hair cell(s)
-
SHC
short hair cell(s)
-
THC
tall hair cell(s) 相似文献
10.
11.
12.
Embryonic diapause of the silkworm, Bombyx mori, is induced by a neuropeptide hormone, the diapause hormone (DH), which is secreted from a limited number of neurosecretory cells in the subesophageal ganglion (SG) at the maternal generation. We examined the developmental fate of the hormone-producing cell (DH-pheromone biosynthesis activating neuropeptide [PBAN]-producing cell) in the embryonic stage at the level of gene expression and cell biology. The DH-PBAN gene expression started at the histogenesis stage and gradually increased toward hatching. DH is an amidated peptide belonging to FXPRLamide family. The immunoreactive somata against anti FXPRLamide antiserum were found in the SG from blastokinesis. Immunoreactive neural processes with varicosites were also found on the corpus cardiacum and the corpus allatum. The implantation of a part of a developing embryo including the SG into the pupae with the SG removed induced diapause eggs in the progeny. These results were obtained from eggs incubated under diapause-averting conditions as well as diapause-inducing conditions. Thus, a neurosecretory system responsible for biosynthesis of FXPRLamide neuropeptides is established as early as histogenesis, although the system to regulate the secretion of neuropeptide hormones has not been fully formed by that time. 相似文献
13.
Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
15.
16.
Gerhart J Elder J Neely C Schure J Kvist T Knudsen K George-Weinstein M 《The Journal of cell biology》2006,175(2):283-292
MyoD mRNA is expressed in a subpopulation of cells within the embryonic epiblast. Most of these cells are incorporated into somites and synthesize Noggin. Ablation of MyoD-positive cells in the epiblast subsequently results in the herniation of organs through the ventral body wall, a decrease in the expression of Noggin, MyoD, Myf5, and myosin in the somites and limbs, and an increase in Pax-3-positive myogenic precursors. The addition of Noggin lateral to the somites compensates for the loss of MyoD-positive epiblast cells. Skeletal muscle stem cells that arise in the epiblast are utilized in the somites to promote muscle differentiation by serving as a source of Noggin. 相似文献
17.
18.
19.
(1) In the mouse embryo there are changes in lactate dehydrogenase activity and isoenzyme pattern during the differentiation of cartilage and bone. (2) The specific activity of lactate dehydrogenase rises during chondrogenesis and falls during osteogenesis. (3) Identical isoenzyme transitions occur in parallel in both tissues: undifferentiated limb bud mesenchyme contains isoenzymes 1-5 whereas in both the cartilaginous and bony portions of a long bone developing from the mesenchyme, there is a progressive shift towards a predominance of the 'anaerobic' isoenzymes 4 and 5. 相似文献
20.
The distribution of apoptosis-inducing factor (AIF) immunoreactivity has been studied in the developing somites and nervous system of the chick embryo at embryonic day 4. AIF was found to be expressed primarily in the cytoplasm of cells of the ventral motor roots, at the points of their insertion into the neural tube. Co-localization of mitochondrial AIF immunoreactivity with the epitopes recognized by the monoclonal antibodies HNK-1 and 1E8 suggests that the AIF may be present in Schwann cell precursors as well as in nerve fibres. AIF immunoreactivity was not observed in either cell bodies in the neural tube, or in the somitic tissue surrounding the ventral roots. The results are consistent with the hypothesis that AIF may be involved in neuronal cell death during development, and that target-derived neuronal survival factors may act by controlling AIF activity. 相似文献