首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovomucoids consist of a single polypeptide chain which is composed of three tandem Kazal domains. Each Kazal domain is an actual or putative protein inhibitor of serine proteinases. Ovomucoid third domains were already isolated and sequenced from 126 species of birds (Laskowskiet al., 1987, 1990). This paper adds 27 new species. A number of generalizations are made on the basis of sequences from 153 species. The residues that are in contact with the enzyme in enzyme-inhibitor complexes are strikingly hypervariable. While the primary specificity residue,P 1, is the most variable; substitutions occur predominantly among aliphatic, hydrophobic residues. Consensus sequences for an avian ovomucoid third domain, for a b-type Kazal domain (i.e., a COOH terminal domain of multidomain inhibitors) and for a general Kazal domain are given. Finally, the individual new sequences are briefly discussed.  相似文献   

2.
3.
Hen ovalbumin contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryl groups (Cys11, Cys30, Cys367, and Cys382) in a single polypeptide chain of 385 amino acid residues. To investigate whether or not such a structure is shared by related avian species, the contents of disulfide-involved half-cystine residues and their positions in the primary structure of ovalbumins from five species were compared with those of hen ovalbumin. Ovalbumins were alkylated with a fluorescent dye, IAEDANS, under disulfide-reduced and disulfide-intact conditions and digested with a number of proteolytic enzymes. The sequences were deduced from peptides containing half-cystine residues labeled with the fluorescent dye. The results showed that the number of free cysteine sulfhydryl groups of ovalbumins was different among the species, three for guinea fowl and turkey (Cys11, Cys367, and Cys382); and two for Pekin duck, mallard duck, and Emden goose (Cys11 and Cys331). On the other hand, a single intrachain disulfide bond could be identified from ovalbumins of five species using a combination of peptide mapping and N-terminal amino acid sequencing analysis under reduced and non-reduced conditions, in which the intrachain disulfide bond was like that of hen ovalbumin (Cys73-Cys120). The results also indicated that the variations in amino acid sequences on these peptides containing half-cystine residues bear a close relationship with the phylogeny of the six species.  相似文献   

4.
Ovomucoids were isolated from 25 avian species other than the 101 studied in Laskowskiet al. (1987,Biochemistry 26, 202–221). These were subjected to limited proteolysis with an appropriate enzyme, and connecting peptide extended ovomucoid third domains were isolated and sequenced to the end in a protein sequencer. Of the 25 new sequences, 13 duplicate ones were already known, and 12 are unique. Probably the most striking findings are a Pro14 Ser14 replacement in weka, an Ala14Thr15 replacement in Bulwer's pheasant, the discovery of two additional amino acid residues Ile18 and Gly18 at the P1 reactive site position in Kalij pheasant and tawny frogmouth, respectively, and the first finding of a negative (Glu34) rather than positive (Lys34 or Arg34) amino acid residue at the NH2 terminus of the helix in caracara ovomucoid third domain. These results complete the determination of all the sequences of ovomucoid third domains in the four species genusGallus, in the five species genusSyrmaticus, and in the two species generaAix andPavo.  相似文献   

5.
Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous beta-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register beta-sheet structure.  相似文献   

6.
7.
Song J  Laskowski M  Qasim MA  Markley JL 《Biochemistry》2003,42(10):2847-2856
From the larger set of 191 variants at all the variable contact positions in the turkey ovomucoid third domain, we selected a subset that consists of Asp, Glu, His, and Lys residues at eight of the nine contiguous P6-P3' positions (residues 13-21), the exception being P3-Cys16 which is involved in a conserved disulfide bridge. Two-dimensional [1H,1H]-TOCSY data were collected for each variant as a function of sample pH. This allowed for the evaluation of 31 of the 32 pK(a) values for these residues, the exception being that of P5-Lys14, whose signals at high pH could not be resolved from those of other Lys residues in the molecule. Only two of the titrating residues are present in the wild-type protein (P6-Lys13 and P1'-Glu19); hence, these measurements complement earlier measurements by A. D. Robertson and co-workers. This data set was supplemented with results from the pH dependence of NMR spectra of four additional single mutants, P1-Leu18Gly, P1-Leu18Ala, P2-Thr17Val, and P3'-Arg21Ala, and two double mutants, P2-Thr17Val/P3'-Arg21Ala and P8-Tyr11Phe/P6-Lys13Asp. Probably the most striking result was observation of a P2-Thr17...P1'-Glu19 hydrogen bond and a P1'-Glu19-P3'-Arg21 electrostatic interaction within the triad of P2, P1', and P3' (residues 17, 19, and 21, respectively). In several cases, the pK(a) of a particular residue was sensed by resonances not only in that residue but also in residue(s) with which it interacts. Remarkably, in several interacting systems, resonances from different protons within the same residue yielded different pHmid values.  相似文献   

8.
A parasite's shift to a new host may have serious evolutionary consequences, since host switching usually is associated with a change in virulence and may lead to the evolution of emerging diseases. This phenomenon remains insufficiently studied in wildlife. Here, we combine microscopic examination of blood films and PCR-based methods to investigate the natural host specificity of Haemoproteus and Plasmodium spp. in birds of 4 families of the Passeriformes within a small geographic area. The material was collected on the Curonian Spit in the Baltic Sea between May and July in 2003-2004. A nested-PCR protocol was used for amplifying and sequencing a fragment of 480 nucleotides of the cytochrome b gene of the mtDNA of these parasites. Blood samples from 282 birds, which were positive both by microscopic examination of blood films and mtDNA amplification, were used in this study. We found that Haemoproteus majoris (lineages hPARUS1, hCCF5, hWW2, and hPHSIB1), Haemoproteus sp. (hWW1), Plasmodium (Haemamoeba) sp. (pSGS1), and Plasmodium (Haemamoeba) sp. (pGRW11) are capable of infecting birds belonging to different families of passeriform birds. Some species of Haemoproteus are less specific than have been traditionally believed. Haemoproteus majoris appears to have a genetic predisposition to have a broad host range. The level of host specificity varies markedly among different species of hemosporidian parasites of birds. The natural host range is thus not a reliable taxonomic character in the systematics of these parasites in the form in which it is still accepted in some recent taxonomic studies.  相似文献   

9.
10.
11.
12.
Morganella morganii, a very common cause of catheter-associated bacteriuria, was previously classified with the genus Proteus on the basis of urease production. M. morganii constitutively synthesizes a urease distinct from that of other uropathogens. The enzyme, purified 175-fold by passage through DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 chromatography resins, was found to have a native molecular size of 590 kilodaltons and was composed of three distinct subunits with apparent molecular sizes of 63, 15, and 6 kilodaltons, respectively. Amino-terminal analysis of the subunit polypeptides revealed a high degree of conservation of amino acid sequence between jack bean and Proteus mirabilis ureases. Km for urea equalled 0.8 mM. Antiserum prepared against purified enzyme inhibited activity by 43% at a 1:2 dilution after 1 h of incubation. All urease activity was immunoprecipitated from cytosol by a 1:16 dilution. Antiserum did not precipitate ureases of other species except for one Providencia rettgeri strain but did recognize the large subunits of ureases of Providencia and Proteus species on Western blots (immunoblots). Thirteen urease-positive cosmid clones of Morganella chromosomal DNA shared a 3.5-kilobase (kb) BamHI fragment. Urease gene sequences were localized to a 7.1-kb EcoRI-SalI fragment. Tn5 mutagenesis revealed that between 3.3 and 6.6 kb of DNA were necessary for enzyme activity. A Morganella urease DNA probe did not hybridize with gene sequences of other species tested. Morganella urease antiserum recognized identical subunit polypeptides on Western blots of cytosol from the wild-type strain and Escherichia coli bearing the recombinant clone which corresponded to those seen in denatured urease. Although the wild-type strain and recombinant clone produced equal amounts of urease protein, the clone produced less than 1% of the enzyme activity of the wild-type strain.  相似文献   

13.
How insulin binds to and activates the insulin receptor has long been the subject of speculation. Of particular interest are invariant phenylalanine residues at consecutive positions in the B chain (residues B24 and B25). Sites of mutation causing diabetes mellitus, these residues occupy opposite structural environments: Phe(B25) projects from the surface of insulin, whereas Phe(B24) packs against the core. Despite these differences, site-specific cross-linking suggests that each contacts the insulin receptor. Photoactivatable derivatives of insulin containing respective p-azidophenylalanine substitutions at positions B24 and B25 were synthesized in an engineered monomer (DKP-insulin). On ultraviolet irradiation each derivative cross-links efficiently to the receptor. Packing of Phe(B24) at the receptor interface (rather than against the core of the hormone) may require a conformational change in the B chain. Sites of cross-linking in the receptor were mapped to domains by Western blot. Remarkably, whereas B25 cross-links to the C-terminal domain of the alpha subunit in accord with previous studies (Kurose, T., et al. (1994) J. Biol. Chem. 269, 29190-29197), the probe at B24 cross-links to its N-terminal domain (the L1 beta-helix). Our results demonstrate that consecutive residues in insulin contact widely separated sequences in the receptor and in turn suggest a revised interpretation of electron-microscopic images of the complex. By tethering the N- and C-terminal domains of the extracellular alpha subunit, insulin is proposed to stabilize an active conformation of the disulfide-linked transmembrane tyrosine kinase.  相似文献   

14.
XPF and ERCC1 exist as a heterodimer to be stable and active in cells and catalyze DNA cleavage on the 5'-side of a lesion during nucleotide excision repair. To characterize the specific interaction between XPF and ERCC1, we expressed the human ERCC1 binding domain of XPF (XPF-EB) and the XPF binding domain of ERCC1 (ERCC1-FB) in Escherichia coli. Milligram quantities of a heterodimer were characterized with gel filtration chromatography, an Ni(2+)-NTA binding assay, and analytical ultracentrifugation. Cross-linking experiments at high salt concentrations revealed that XPF interacts with ERCC1 mainly through hydrophobic interactions. XPF-EB was also shown to homodimerize in the absence of ERCC1. NMR cross-saturation methods were applied to map the residues involved in formation of the XPF-EB.XPF-EB homodimer and the XPF-EB.ERCC1-FB heterodimer. Helix H3 and the C-terminal region of XPF-EB were either within or in close proximity to the homodimer interface, whereas the ERCC1-FB binding site of XPF-EB was distributed across helix H1, a small part of H2, H3, and the C-terminal region, most of which exhibited large changes in chemical shift upon ERCC1 binding. The XPF-EB heterodimeric interface is larger than the XPF-EB homodimeric one, which could explain why XPF has a stronger affinity for ERCC1 than for a second molecule of XPF. The XPF binding sites of ERCC1 were located in helices H1 and H3 and in the C-terminal region, similar to the involved surface of XPF. We used cross-saturation data and the crystal structure of related proteins to model the two complexes.  相似文献   

15.
A Charomid ordered-array library containing a 2–16 Kb size fraction of MbeoI-digested canine genomic DNA has been screened with the Jeffreys multilocus probes, 33-6 and 33-15, to identify and isolate canine minisatellite sequences. Of the 48 positive clones identified, 7 were found to contain polymorphic mini-satellites with heterozygosities in the range 20–88%. The majority of the remainder were either monomorphic or dimorphic in the animals tested. Analysis of intrabreed variation in Bedlington Terriers using two polymorphic minisatellites has shown that a significant reduction occurs in the number of alleles seen compared to an agglomerated population sample, correlating with the high level of inbreeding within this breed. Flanking DNA sequence and partial repeat sequence is presented for the most polymorphic minisatellite thus far identified, cCfaMP5. The variable region in this mini-satellite is similar to human minisatellites which show a distinct purine or pyrimidine strand bias.  相似文献   

16.
Sarcocystis neurona is a protozoan parasite that causes a neurological disease in horses called equine protozoal myeloencephalitis. The route of transmission is speculated to be by fecal-oral transfer of sporocysts shed from opossums. Controversy exists regarding both the natural life cycle for this parasite as well as the species identity of opossum Sarcocystis. To provide stage-specific material for species comparison, 27 opossums from southern Michigan were screened for Sarcocystis spp. sporocysts. Seven opossums were positive for Sarcocystis sporocysts by fecal flotation. A simplified, effective technique for isolation, excystation, and culture of opossum Sarcocystis sp. from mucosal scrapings was developed. All 7 Sarcocystis sp. isolates were successfully cultured to grow long term in equine dermal cells to the merozoite stage. Merozoites were observed between 5 and 15 days after inoculation. In conclusion, opossums shed Sarcocystis sp. sporocysts that may be manipulated to excyst and grow in vitro in equine dermal cell lines to the merozoite stage using the simplified technique described.  相似文献   

17.
18.
Summary Steps involved in excitation-contraction coupling in mammalian myocardium have been derived using a relatively limited number of animal species. However, the use of animal models for investigations into excitation-contraction coupling in normal and disease states has encompassed a wide range of animal species. We addressed the question as to whether excitation-contraction coupling as currently understood applies to intracellular calcium handling in myocardium from multiple mammalian species, amphibian, and avian myocardium. The bioluminescent calcium indicator aequorin was used to record intracellular calcium transients in both ventricular and atrial tissue. We report that in all mammalian and avian species studied the calcium transient recorded in both ventricular and atrial myocardium is monophasic and reflects calcium release and re-uptake by the sarcoplasmic reticulum. In contrast, the Ca2+ transient recorded from salamander myocardium is prolonged relative to mammalian and avian myocardium, and appears to reflect in part trans-sarcolemmal calcium entry. Only in diseased myocardium derived from human and swine myocardium was a second component detected in the calcium transient. These data indicate that sarcoplasmic reticulum calcium handling is pivotal in excitation-contraction coupling for multiple species with differing physiologies. Also, in disease states, intracellular calcium handling is often affected with resultant alterations in the time-course and/or configuration of the calcium transient.  相似文献   

19.
Cholesterol is an abundant lipid of the trans-Golgi network (TGN) and of certain endosomal membranes where cholesterol-rich microdomains are important in the organization and compartmentalization of vesicular trafficking. Here we describe the development of a rapid method to isolate a cholesterol-rich endomembrane fraction. We show that widely used subcellular fractionation techniques incompletely separate cholesterol-rich membranes, such as the TGN, from organelles, such as late endosomes and lysosomes. To address this issue, we devised a new subcellular fractionation scheme involving two rounds of velocity centrifugation, membrane sonication, and discontinuous sucrose density gradient centrifugation. This strategy resulted in the isolation of a cholesterol and GM1 glycosphingolipid-enriched membrane fraction that was completely cleared of plasma membrane, endoplasmic reticulum, and mitochondria. This buoyant fraction was enriched for the TGN and recycling endosome proteins Rab11 and syntaxin-6, and it was well resolved from cis-Golgi and early and late endosomal membranes. We demonstrate that this technique can give useful insights into the compartmentation of phosphoinositide synthesis, and it facilitates the isolation of cholesterol-rich membranes from a population of TGN-trafficking vesicles.  相似文献   

20.
Prokaryotic elongation factors EF-Tu form a family of homologous, three-domain molecular switches catalyzing the binding of aminoacyl-tRNAs to ribosomes during the process of mRNA translation. They are GTP-binding proteins, or GTPases. Binding of GTP or GDP regulates their conformation and thus their activity. Because of their particular structure and regulation, various activities (also outside of the translation system) and a relative abundance they represent attractive tools for studies of many basic but still not fully understood mechanisms both of the translation process, the structure-function relationships in EF-Tu molecules themselves and proteins and energy transduction mechanisms in general. The review critically summarizes procedures for the isolation and purification of native and engineered eubacterial elongation factors EF-Tu and their mutants on a large as well as small scale. Current protocols for the purification of both native and polyHis-tagged or glutathione-S-transferase (GST)-tagged EF-Tu proteins and their variants using conventional procedures and the Ni-NTA-Agarose or Glutathione Sepharose are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号