首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sporoblast and sporozoite formation from oocysts of the avian malarial parasite, Plasmodium gallinaceum, after the seventh day of infection in Aedes aegypti mosquitoes offers an interesting example of differentiation involving the appearance and modification of several cellular components. Sporoblast formation is preceded by (a) invaginations of the oocyst capsule into the oocyst cytoplasm, (b) subcapsular vacuolization and cleft formation, (c) the appearance of small tufts of capsule material on the previously noted invaginations, and (d) linear dense areas located just below the oocyst plasma membrane which predetermine the site of emerging sporozoites from the sporoblast. The subcapsular clefts subdivide the once-solid oocyst into sporoblast peninsulae. Within the sporoblast, nuclei migrate from the random distribution seen in the solid oocyst and come to lie at the periphery of the sporoblast just below the linear dense areas noted in the earlier stage. A typical nuclear fiber apparatus occurs in most of the nuclei seen in random sections at this stage although such a fiber apparatus may occasionally be seen in the solid oocyst stage. The nucleus, its associated fiber apparatus, and the overlying dense area appear to induce the onset of sporozoite budding from the sporoblast as well as the formation of the sporozoite pellicular complex and the paired organelle precursor. Several mitochondria are present in each sporozoite, in contrast to the single mitochondrion seen in the merozoites of the erythrocytic and exoerythrocytic stages of avian malaria infection. The paired organelles and associated dense inclusion bodies are formed by condensation of an irregular meshwork of membrane-bound, coarse, dense material. The nature of small, particulate cytoplasmic inclusions is described.  相似文献   

2.
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.  相似文献   

3.
Gonzalez-Ceron, L., Rodriguez, M. H., Wirtz, R. A., Sina, B. J., Palomeque, O. L., Nettel, J. A., and Tsutsumi, V. 1998.Plasmodium vivax:A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.Experimental Parasitology90, 203–211. The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells.Plasmodium vivaxCS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with otherPlasmodiumspecies, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with allP. vivaxsporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.  相似文献   

4.
Developing oocysts of the gregarine Pterospora floridiensis Landers 2001 were examined by transmission electron microscopy. Each oocyst had an outer capsule and an inner capsule that contained 8 sporozoites. In early stages of development the inner capsular wall was separated from the developing sporozoites and residual mass, and was not appressed to the sporozoites. Early stage sporozoites were connected to a residual mass and were filled with endoplasmic reticulum, golgi and numerous developing secretory vesicles. In late stages of oocyst and sporozoite development, the inner capsular wall was closely appressed to the sporozoite surface. The inner capsular wall was ~60-100 nm thick and the outer capsular wall was ~160-320 nm thick. There were no extensions on the outer wall for which the genus was named. Late stage sporozoites had no residual mass connection, were more electron dense, and contained three distinct types of dense secretory structures: 1) small oval/spherical dense vesicles, 2) large (350-400 nm) vesicles near the anterior end, and 3) elongated dense tubular bodies that converged at the apex. Few ultrastructural reports exist of developing gregarine oocysts and sporozoites, and as more studies are completed these morphological characteristics may be important in interpreting molecular phylogenetic analyses.  相似文献   

5.
陈佩惠  胡昌仁 《动物学报》1990,36(4):330-334
应用透射电镜观察间日疟原虫在大劣按蚊体内发育的卵囊内成孢子细胞及子孢子形成过程形态变化。疟原虫采自带有配子体的间日疟自愿者。蚊虫在感染后8天作解剖。本研究观察结果与前人所描述的柏氏疟原虫和鸣疟原虫的成孢子细胞与子孢子形成过程相似,即成孢子细胞形成开始于卵囊被膜下的周围出现液泡,而随着膜下液泡增大,逐渐向胞质延伸并联接成裂缝,使胞质再分裂而形成。子孢子周围的膜下微管分布不对称,其数目和排列型式,多数为:7+4、7+5、8+4和8+5,少数为10+1,与前人报告不同(10+1)。  相似文献   

6.
SYNOPSIS. Sporogony of oocysts of Isospora rivolta from the dog was studied by observation of individual oocysts in hanging drop preparations. Oocysts were passed with the feces in the unsporulated sporont stage. Division of the sporont gave rise to 2 spherical sporoblasts. Each sporoblast elongated and developed into a transient double pyramid stage. This stage changed into the sporocyst, which then differentiated into the sporulated oocyst. Sporulation time was determined for 4 temperatures. At 20 C, 100% of the sporulating oocysts (Sz 100) had formed sporozoites by 48 hr. At 25 C, Sz 100 was 24 hr, at 30 C it was 16 hr, and at 38 C 8 hr. The percentages of sporulation at 20, 25, 30, and 38 C were 94, 97, 96, and 93, respectively. Oocysts incubated at 50 C for 4 hr did not develop or survive, since they failed to sporulate when reincubated at 30 C.  相似文献   

7.
The sporozoite stage of the Plasmodium parasite is formed by budding from a multinucleate oocyst in the mosquito midgut. During their life, sporozoites must infect the salivary glands of the mosquito vector and the liver of the mammalian host; both events depend on the major sporozoite surface protein, the circumsporozoite protein (CS). We previously reported that Plasmodium berghei oocysts in which the CS gene is inactivated do not form sporozoites. Here, we analyzed the ultrastructure of P.berghei oocyst differentiation in the wild type, recombinants that do not produce or produce reduced amounts of CS, and corresponding complemented clones. The results indicate that CS is essential for establishing polarity in the oocyst. The amounts of CS protein correlate with the extent of development of the inner membranes and associated microtubules underneath the oocyst outer membrane, which normally demarcate focal budding sites. This is a first example of a protein controlling both morphogenesis and infectivity of a parasite stage.  相似文献   

8.
ABSTRACT. Expression of a 21 kDa determinant (Pbs21), first detected on the surface of ookinetes, and of the circumsporozoite protein (CSP) was studied by immunofluorescence and Western blots during the developmental cycle of Plasmodium berghei in the mosquito A nopheles stephensi . The expression of Pbs21 was predominantly localised on the ookinete surface one day after the infectious blood meal, and thereafter reactivity declined to a minimum on days 2 and 3, the time of onset of oocyst development. A gradual increase in fluorescence was observed on the oocysts from day 6 that was retained until day 17 post-infection. In contrast, sporozoites released from oocysts or salivary glands showed little or no antibody labelling with anti-Pbs21. Circumsporozoite protein was not detectable in any rnidgut preparations until 5–6 days after feeding, when reactivity was observed against immature oocysts. Expression then continued and increased throughout oocyst and sporozoite development. Western blots confirmed that Pbs21 was expressed minimally during the oocyst development but was not detectable in sporozoites. Co-localisation of anti-Pbs21 and anti-CSP monoclonal antibodies to the 50 kDa and 60 kDa bands in Western blots of sporozoite suggests immunological cross-reactivity between the CSP and the anti-21 kDa antibodies.  相似文献   

9.
SYNOPSIS. The transformation of the P. cynomolgi oocyst into definitive sporozoite forms occurs 8–10 days after an infective blood meal by Anopheles, stephensi mosquitoes. Vacuolization divides the oocyst cytoplasm into sporoblast sub-units from which sporozoites bud. The role of sporoblast nuclear and cytoplasmic components in the complex differentiative process is discussed.  相似文献   

10.
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.  相似文献   

11.
The sporogonic development of Leucocytozoon smithi in its black fly vector was studied by light and electron microscopy and was compared with that of other haemosporidians. Within 18 to 24 h after ingestion of gametocytes by black flies, ookinetes passing through the midgut epithelium were observed. Intracellular migration of ookinetes resulted in the apparent disruption and degeneration of host cells. Intercellular migration also occurred as was evidenced by the presence of ookinetes between midgut cells. Transformation of ookinete to spherical oocyst occurred extracellularly in three different sites. Although most oocysts were found between the host cell basal membrane and the basal lamina, large numbers also were found attached to the external surface of the basal lamina, projecting into the hemocoel. Ectopic development of oocysts in the midgut epithelium between cells was observed much less frequently than development on the basal side of the midgut. The oocyst wall of dense granules, believed to be of parasite origin, was distinguishable from the basal lamina of the host's midgut epithelium. As in other Leucocytozoidae, the cytoplasm of the oocyst differentiated into a single sporoblastoid from which 30-50 sporozoites were formed. Beginning on the third day post infection, elongation of segregated dense sporoblastoid material associated with pellicle thickening led to the formation of the finger-like sporozoite buds which projected into the oocyst cavity. Sporozoites within mature oocysts and salivary glands were structurally similar to sporozoites as described for other haemosporidians.  相似文献   

12.
13.
Early sporogony of Plasmodium parasites involves 2 major developmental transitions within the insect vector, i.e., gametocyte-to-ookinete and ookinete-to-oocyst. This study compared the population dynamics of early sporogony among murine rodent Plasmodium (Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii) developing within Anopheles stephensi mosquitoes. Estimates of absolute densities were determined for gametocytes, ookinetes, and oocysts for 108 experimental infections. Total losses throughout early sporogony were greatest in P. vinckei (ca. 250,000-fold loss), followed by P. yoelii (ca. 70,000-fold loss), P. berghei (ca. 45,000-fold loss), and P. chabaudi (ca. 15,000-fold loss). The gametocyte-to-ookinete transition represented the most severe population bottleneck. Numerical losses during this transition (ca. 3,000- to 30,000-fold, depending on species) were orders of magnitude greater than losses incurred during the ookinete-to-oocyst transition (3- to 14-fold). There were no significant correlations between gametocyte and ookinete densities. Significant correlations between ookinete and oocyst densities existed for P. berghei, P. chabaudi, and P. yoelii (but not for P. vinckei), and were best described by nonlinear functions (P. berghei = sigmoid, P. chabaudi = hyperbolic, P. yoelii = sigmoid), indicating that conversion of ookinetes to oocysts in these species is density dependent. The upper theoretical limit for oocyst density on the mosquito midgut for P. chabaudi and P. yoelii (ca. 300 oocysts per midgut) was higher than for P. berghei (ca. 30 oocysts per midgut). This study provides basic information about population processes that occur during the early sporogonic development of some common laboratory model systems of malaria.  相似文献   

14.
Malaria infection in the mosquito vector can be modulated by the vertebrate host, mosquito factors, and interactions between different parasite populations. Modulation of parasite development can be assessed through the study of gene expression. The present report describes a specific, sensitive, and nonradioactive method that permits assessment of parasite load and quantification of circumsporozoite protein gene expression during the sporogonic stages of Plasmodium yoelii yoelii and P. y. nigeriensis. A decrease in parasite load was observed when comparing DNA of oocysts on day 7 postinfection with that of oocysts and sporozoites on day 19. On day 7, parasites (oocysts) showed a marked increase of circumsporozoite protein expression when compared with that (sporozoites and oocysts) on day 19. The method developed in this work can be a valuable tool to understand parasite interaction mechanisms that are involved in mosquito malaria infections.  相似文献   

15.
A simple method of DNA extraction for Eimeria species   总被引:4,自引:0,他引:4  
A new, simple method is described for extracting DNA from coccidia (Eimeriidae) oocysts. In our hands this method works well for all Eimeria oocysts and, presumably, will work equally well for oocysts of other coccidia genera. This method combines the two steps of breaking oocyst and sporocyst walls, and dissolving the sporozoite membrane in one step. This greatly simplifies the currently used DNA extraction procedures for Eimeria species and overcomes the disadvantages of existing DNA extraction methods based on glass-bead grinding and sporozoite excystation procedures. Because all the procedures are done in a 1.5-ml microfuge tube, which minimizes the loss of DNA in the extraction procedures, this method is especially suitable for samples with small number of oocysts. In addition, this method directly lyses the oocyst and sporocyst walls as well as the sporozoite membrane in a continuous incubation; therefore, it does not require the sporozoites to be alive. The results of PCR experiments indicate that this method generates better quality of DNA than what the existing glass-bead grinding method does for molecular analysis, and is suitable for both large or small number (<10(2) oocysts) of living or dead oocyst samples.  相似文献   

16.
A new Eimeria sp. is described as the cause of an outbreak of renal coccidiosis in double-crested cormorants (Phalacrocorax auritus) in Georgia. Sporulated oocysts were spherical to subspherical and measured 16.1 x 16.5 (13.8-18 x 14-19) microm, with an average length-width ratio of 1:1. Oocyst wall was thin (1 microm), greenish, and pitted on the outer surface. Micropyle, micropylar cap, Stieda body, and polar bodies were absent. Small oocyst residuum (4-8 granules) was usually absent but occasionally present. Sporocysts were oval and measured 6.6 x 9.3 (6-7 x 8-10.5) microm, with an average length-width ratio of 1:1.4. A sporocyst residuum was present, located in between sporozoites, and was composed of numerous granules of unequal size. A small refractile body was present in each sporozoite. Collecting duct and distal renal tubular epithelial cells were distended by large oocysts in their cytoplasm, and many oocysts were present in the lumen of dilated tubules. Various stages of meronts, gamonts, and developing oocysts were present in other renal tubular epithelial cells. Multiple infections of parasitized cells were frequently observed, with cells containing up to 12 gamonts or developing oocysts. The importance of this Eimeria sp. on double-crested cormorant populations is not known. But in this case, significant lesions and mortality were associated with infection.  相似文献   

17.
The sporogonic development of Leucocytozoon smithi in its black fly vector was studied by light and electron microscopy and was compared with that of other haemosporidians. Within 18 to 24 h after ingestion of gametocytes by black flies, ookinetes passing through the midgut epithelium were observed. Intracellular migration of ookinetes resulted in the apparent disruption and degeneration of host cells. Intercellular migration also occurred as was evidenced by the presence of ookinetes between midgut cells. Transformation of ookinete to spherical oocyst occurred extracellularly in three different sites. Although most oocysts were found between the host cell basal membrane and the basal lamina, large numbers also were found attached to the external surface of the basal lamina, projecting into the hemocoel. Ectopic development of oocysts in the midgut epithelium between cells was observed much less frequently than development on the basal side of the midgut. The oocyst wall of dense granules, believed to be of parasite origin, was distinguishable from the basal lamina of the host's midgut epithelium. As in other Leucocytozoidae, the cytoplasm of the oocyst differentiated into a single sporoblastoid from which 30–50 sporozoites were formed. Beginning on the third day post infection, elongation of segregated dense sporoblastoid material associated with pellicle thickening led to the formation of the finger-like sporozoite buds which projected into the oocyst cavity. Sporozoites within mature oocysts and salivary glands were structurally similar to sporozoites as described for other haemosporidians.  相似文献   

18.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

19.
The plasma membrane of Plasmodium sporozoites is uniformly covered by the glycosylphosphatidylinositol (GPI)-anchored circumsporozoite (CS) protein. Sporozoites form in the mosquito midgut through a budding process that occurs within a multinucleate oocyst underneath the basal lamina of the gut. Earlier genetic studies established that normal sporozoite development requires CS. Mutant parasites lacking CS [CS (-)] do not form sporozoites. Ultrastructural analysis of the oocysts from these parasites revealed that there is an early block in the cytokinesis that occurs within the multinucleate oocysts to generate individual sporozoites. Parasites that are hypomorphic for CS expression gave rise to sporozoites with abnormal morphology. These results proved that CS plays a direct role in the maturation of oocysts and in the normal budding of sporozoites. In this article, we examined if the membrane localization of CS via a GPI-anchor, is crucial for its function during sporozoite formation. We generated three mutants in Plasmodium berghei CS, CS-DeltaGPI, CS-TM1 and CS-TM2. In CS-DeltaGPI, we deleted the signal sequence required for the addition of a GPI-anchor to CS. The resulting protein was found only in the cytoplasm of the oocyst. In CS-TM1 and CS-TM2, the GPI-anchor addition sequence of CS was substituted by the transmembrane domain and truncated (to different degrees) cytoplasmic tail of Plasmodium thrombospondin-related anonymous protein (TRAP). The resulting CS protein was detected on the plasma membrane of the oocysts. The amount of CS in the mutants was similar to that of wild type. The sporozoite budding and development were abrogated in both CS-DeltaGPI and CS-TM mutants. The ultrastructure of the mutant oocysts was indistinguishable from that of the CS (-) parasites. Our results suggest that the GPI-anchor of the CS protein is required for sporogenesis.  相似文献   

20.
Current assay methods to detect Cryptosporidium oocysts in water are generally not able to evaluate viability or infectivity. A method was developed for low-level detection of infective oocysts by using HCT-8 cells in culture as hosts to C. parvum reproductive stages. The infective foci were detected by labeling intracellular developmental stages of the parasite in an indirect-antibody assay with a primary antibody specific for reproductive stages and a secondary fluorescein isothiocyanate-conjugated antibody. The complete assay was named the focus detection method (FDM). The infectious foci (indicating that at least one of the four sporozoites released from a viable oocyst had infected a cell) were enumerated by epifluorescence microscopy and confirmed under Nomarski differential interference contrast microscopy. Time series experiments demonstrated that the autoreinfective life cycle in host HCT-8 cells began after 12 h of incubation. Through dilution studies, levels as low as one infectious oocyst were detected. The cell culture FDM compared well to other viability assays. Vital stains and excystation demonstrated that oocyst populations less than 1% viable (by vital dyes) and having a low sporozoite yield following excystation could not infect host cells. Until now, the water industry has relied on an oocyst detection method (under an information collection regulation) that is unable to determine viability. The quantifiable results of the cell culture method described demonstrate two important applications: (i) an infectivity assay that may be used in conjunction with current U.S. Environmental Protection Agency-mandated detection methodologies, and (ii) a method to evaluate oocyst infectivity in survival and disinfection studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号