首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell based therapy for the treatment of type 1 diabetes is limited by the overall shortage of donor organs for transplantation. This is the rationale for the research on the generation of insulin-producing beta cells from an inexhaustible source of cells such as the stem cells. Stem cells are progenitor cells which possess the capacity of self-renewing and differentiation in fully mature cells depending on the culture conditions. The fundamental question is how to make terminally matured pancreatic beta cells. During the last years different approaches for the neogenesis of beta cells have been described using embryonic stem cells, adult stem cells residing in the pancreas, or other nonpancreatic cell types. Although fully functional islets have not yet been derived from any stem cells, the use of stem cells is still the most promising approach on the way to establish a treatment protocol for the cure of type 1 diabetes in the future.  相似文献   

2.
Type 1 diabetes is a debilitating condition, affecting millions worldwide, that is characterized by the autoimmune destruction of insulin-producing pancreatic islets of Langerhans. Although exogenous insulin administration has traditionally been the mode of treatment for this disease, recent advancements in the transplantation of donor-derived insulin-producing cells have provided new hope for a cure. However, in order for islet transplantation to become a widely used technique, an alternative source of cells must be identified to supplement the limited supply currently available from cadaveric donor organs. Stem cells represent a promising solution to this problem, and current research is being aimed at the creation of islet-endocrine tissue from these undifferentiated cells. This review presents a summary of the research to date involving stem cells and cell replacement therapy for type 1 diabetes. The potential for the differentiation of embryonic stem (ES) cells to islet phenotype is discussed, as well as the possibility of identifying and exploiting a pancreatic progenitor/stem cell from the adult pancreas. The possibility of creating new islets from adult stem cells derived from other tissues, or directly form other terminally differentiated cell types is also addressed. Finally, a model for the isolation and maturation of islets from the neonatal porcine pancreas is discussed as evidence for the existence of an islet precursor cell in the pancreas.  相似文献   

3.
The transplantation of islets isolated from donor pancreas has renewed the interest in cell therapy for the treatment of diabetes. In addition, the capacity that stem cells have to differentiate into a wide variety of cell types makes their use ideal to generate beta-cells for transplantation therapies. Several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Finally, although much work remains to be done, there is sufficient evidence to warrant continued efforts on stem cell research to cure diabetes.  相似文献   

4.
成体干细胞的生物学特点及应用前景   总被引:2,自引:0,他引:2  
成体干细胞存在于人和哺乳动物组织中,具有自我更新和一定的分化潜能,现已从骨髓,软骨,血液,神经,肌肉,脂肪,皮肤,角膜缘,肝脏,胰腺等许多组织中获得成体干细胞,发现部分组织成体干细胞具有多向分化潜能,成体干细胞的研究在再生医学中有十分广阔的应用前景。  相似文献   

5.
The search for putative precursor cells within the pancreas has been the focus of extensive research. Previously, we identified rare pancreas-derived multipotent precursor (PMP) cells in the mouse with the intriguing capacity to generate progeny in the pancreatic and neural lineages. Here, we establish the embryonic pancreas as the developmental source of PMPs through lineage-labeling experiments. We also show that PMPs express insulin and can contribute to multiple pancreatic and neural cell types in vivo. In addition, we have isolated PMPs from adult human islet tissue that are also capable of extensive proliferation, self-renewal, and generation of multiple differentiated pancreatic and neural cell types. Finally, both mouse and human PMP-derived cells ameliorated diabetes in transplanted mice. These findings demonstrate that the adult mammalian pancreas contains a population of insulin(+) multipotent stem cells and suggest that these cells may provide a promising line of investigation toward potential therapeutic benefit.  相似文献   

6.
Impressive progress has been made since the turn of the century in the field of stem cells. Different types of stem cells have now been isolated from different types of tissues. Pluripotent stem cells are the most promising cell source for organ regeneration. One such cell type is the germline cell-derived pluripotent cell, which is derived from adult spermatogonial stem cells. The germline cell-derived pluripotent stem cells have been obtained from both human and mouse and, importantly, are adult stem cells with embryonic stem cell-like properties that do not require specific manipulations for pluripotency acquisition, hence bypassing problems related to induced pluripotent stem cells and embryonic stem cells. The germline cell-derived pluripotent stem cells have been induced to differentiate into cells deriving from the three germ layers and shown to be functional in vitro. This review will discuss the plasticity of the germline cell-derived pluripotent stem cells and their potential applications in human organ regeneration, with special emphasis on liver regeneration. Potential problems related to their use are also highlighted.  相似文献   

7.
Molecular pathways controlling pancreas induction   总被引:1,自引:0,他引:1  
Recent advances in generating pancreatic cell types from human pluripotent stem cells has depended on our knowledge of the developmental processes that regulate pancreas development in vivo. The developmental events between gastrulation and formation of the embryonic pancreatic primordia are both rapid and dynamic and studies in frog, fish, chick, and mouse have identified the molecular basis of how the pancreas develops from multipotent endoderm progenitors. Here, we review the current status of our understanding of molecular mechanisms that control endoderm formation, endoderm patterning, and pancreas specification and highlight how these discoveries have allowed for the development of robust methods to generate pancreatic cells from human pluripotent stem cells.  相似文献   

8.
Stem-cell-based approaches for regenerative medicine   总被引:2,自引:0,他引:2  
Recent success in transplantation of islets raises the hopes of diabetic patients that replacement therapies may be a feasible treatment of their disease. Although several lines of evidence suggest that stem cells exist in the pancreas, it is still technically hard for us to isolate or maintain the stem cells in vitro. The establishment of human embryonic stem (ES) cells has excited scientists regarding their potential medical use in tissue replacement therapy. When applied with appropriate signals, ES cells can be directed to differentiate into a specific cell lineage. Therefore, ES cells are no doubt an excellent source not only for regenerative medicine but also for studies of early events of pancreatic development, and to portray the pancreatic progenitor cells. Despite many attempts that have been tried, the efficiency of differentiation of ES cells into islets is still very low. This low efficiency reflects our lack of understanding of the intrinsic and extrinsic signals which regulate the developmental processes of the pancreas. In this review, I present a summary of recent works on ES cells, the identification of pancreatic progenitor cells from the adult pancreas, and refer to the possibilities of transdifferentiation from adult stem cells derived from other tissues.  相似文献   

9.
Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson's disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem(ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements.  相似文献   

10.
Umbilical cord blood-derived cells for tissue repair   总被引:3,自引:0,他引:3  
Hematopoietic tissue-derived cells, including stem cells, have been shown to generate solid organ tissue-specific cells. Besides bone marrow and peripheral blood, umbilical cord blood (UCB) has the advantage of being an easily accessible stem cell source provided as a banked cell product. Using the xenogeneic human into NOD/SCID mouse stem cell transplant model preliminary data suggest UCB-derived tissue-specific cells generated in liver, pancreas, CNS and endothelium. In a clinical sex-mismatched UCB transplant setting Y-positive, UCB-derived gastrointestinal epithelial cells and CNS-specific cells have been identified in female patients. The potential therapeutic use of UCB cells for tissue repair is, however, limited by a low total stem cell number available and by HLA-disparity.  相似文献   

11.
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulinproducing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3 D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.  相似文献   

12.
Mesenchymal stem cells (MSCs) have been isolated not only from bone marrow, but also from many other tissues such as adipose tissue, skeletal muscle, liver, brain and pancreas. Because MSC were found to have the ability to differentiate into cells of multiple organs and systems such as bone, fat, cartilage, muscle, neurons, hepatocytes and insulin-producing cells, MSCs have generated a great deal of interest for their potential use in regenerative medicine and tissue engineering. Furthermore, given the ease of their isolation and their extensive expansion rate and differentiation potential, mesenchymal stem cells are among the first stem cell types that have a great potential to be introduced in the clinic. Finally, mesenchymal stem cells seem to be not only hypoimmunogenic and thus be suitable for allogeneic transplantation, but they are also able to produce immunosuppression upon transplantation. In this review we summarize the latest research in the use of mesenchymal stem cells in transplantation for generalized diseases, local implantation for local tissue defects, and as a vehicle for genes in gene therapy protocols.  相似文献   

13.
14.
In this review, I summarize some aspects of murine pancreas development, with particular emphasis on the analysis of the ontogenetic relationships between different pancreatic cell types. Lineage analyses allow the identification of the progenitor cells from which mature cell types arise. The identification and successful in vitro culture of putative pancreatic stem cells is highly relevant for future cell replacement therapies in diabetic patients.  相似文献   

15.
Pancreatic-hepatic switches in vivo   总被引:16,自引:0,他引:16  
The existence of a common endodermal progenitor cell to both pancreas and liver is suggested by anatomy of the development of pancreatic and liver buds in embryogenesis. Here we review the large body of evidence that pancreas to liver and liver to pancreas cell differentiation can also occur in adult life. The published data are consistent with the hypothesis that endodermal progenitor cells, capable of giving rise to multiple hepatic and pancreatic cell types continue to persist. These cells may represent a stem cell reservoir with potential in cell therapy applications in the future.  相似文献   

16.
17.
The Drosophila ovary: an active stem cell community   总被引:1,自引:0,他引:1  
Kirilly D  Xie T 《Cell research》2007,17(1):15-25
Only a small number of cells in adult tissues (the stem cells) possess the ability to self-renew at every cell division,while producing differentiating daughter cells to maintain tissue homeostasis for an organism's lifetime.The Drosophilaovary harbors three different types of stem cell populations (germline stem cell (GSC),somatic stem cell (SSC) andescort stem cell (ESC)) located in a simple anatomical structure known as germarium,rendering it one of the best modelsystems for studying stem cell biology due to reliable stem cell identification and available sophisticated genetic toolsfor manipulating gene functions.Particularly,the niche for the GSC is among the first and best studied ones,and studieson the GSC and its niche have made many unique contributions to a better understanding of relationships between stemcells and their niche.So far,both the GSC and the SSC have been shown to be regulated by extrinsic factors originatingfrom their niche and intrinsic factors functioning within.Multiple signaling pathways are required for controlling GSCand SSC self-renewal and differentiation,which provide unique opportunities to investigate how multiple signals fromthe niche are interpreted in the stem cell.Since the Drosophila ovary contains three types of stem cells,it also providesoutstanding opportunities to study how multiple stem cells in a given tissue work collaboratively to contribute to tissuefunction and maintenance.This review highlights recent major advances in studying Drosophila ovarian stem cells andalso discusses future directions and challenges.  相似文献   

18.
Stem cells are undifferentiated cells that renew themselves while simultaneously producing differentiated tissue- or organspecific cells through asymmetric cell division. The appreciation of the importance of stem cells in normal tissue biology has prompted the idea that cancers may also develop from a progenitor pool (the "cancer stem cell (CSC) hypothesis"), and this idea is gaining increasing acceptance among scientists. CSCs are sub-populations of cancer cells responsible for tumor initiation, differentiation, recurrence, metastasis, and drug resistance. First identified in the hematopoietic system, CSCs have also been discovered in solid tumors of the breast, colon, pancreas, and brain. Recently, the tissue-specific stem cells of the normal urothelium have been proposed to reside in the basal layer, and investigators have isolated phenotypically similar populations of cells from urothelial cancer cell lines and primary tumors. Herein, we review the CSC hypothesis and apply it to explain the development of the two different types of bladder cancer: noninvasive ("superficial") carcinoma and invasive carcinoma. We also examine potential approaches to identify CSCs in bladder cancer as well as therapeutic applications of these findings. While exciting, the verification of the existence of CSCs in bladder cancer raises several new questions. Herein, we identify and answer some of these questions to help readers better understand bladder cancer development and identify reasonable therapeutic strategy for targeting stem cells.  相似文献   

19.
Pancreas: how to get there from the gut?   总被引:5,自引:0,他引:5  
  相似文献   

20.
Embryonic stem (ES) cells can differentiate in vitro into a variety of cell types. Efforts to produce endodermal cell derivatives, including lung, liver and pancreas, have been met with modest success. Understanding how the endoderm originates from ES cells is the first step to generate specific cell types for therapeutic purposes. Recently, it has been demonstrated that inhibition of Myc or mTOR induces endodermal differentiation. Both Myc and mTOR are known to be activators of the Pentose Phosphate Pathway (PPP). We found that, differentely from wild type (wt), ES cells unable to produce pentose sugars through PPP differentiate into endodermal precursors in cell culture conditions generally non-permissive to generate them. The same effect was observed when wt ES cells were differentiated in presence of chemical inhibitors of the PPP. These data highlight a new role for metabolism. Indeed, to our knowledge, it is the first time that modulation of a metabolic pathway is described to be crucial in determining ES cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号