首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lipid rafts are plasma membrane microdomains enriched in sphingolipids and cholesterol. These domains have been suggested to serve as platforms for various cellular events, such as signaling and membrane trafficking. However, little is known about the distribution and dynamics of lipids in these microdomains. Here we report investigations carried out using recently developed probes for the lipid components of lipid rafts: lysenin, a sphingomyelin-binding protein obtained from the coelomic fluid of the earthworm Eisenia foetida; and the fluorescein ester of poly(ethyleneglycol) cholesteryl ether (fPEG-Chol), which partitions into cholesterol-rich membranes. Lysenin reveals that the organization of sphingomyelin differs between different cell types and even between different membrane domains within the same cell. When added to live cells, fPEG-Chol is distributed exclusively on the outer leaflet of the plasma membrane and is clustered dynamically upon activation of receptor signaling. The surface-bound fPEG-Chol is slowly internalized via a clathrin-independent pathway into endosomes with lipid raft markers.  相似文献   

3.
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation.  相似文献   

4.
GPI-anchored proteins and lipid rafts   总被引:2,自引:0,他引:2  
Several proteins are anchored to membranes via a post-translational lipid modification, the glycosylphosphatidylinositol (GPI) anchor. In mammals and other vertebrates, GPI-anchored proteins have been found in almost all tissues and cells examined. Several studies have provided significant insight into the functions of this ubiquitous modification. An intriguing relevant feature of GPI-anchored proteins is their association with lipid rafts, specialized regions of elevated cholesterol and sphingolipid content, that are present within most cell membranes. In addition to the structure and biosynthesis of the GPI-anchor, recent researches have focused on its molecular interaction with lipid rafts and the biological meaning of such interaction. The aim of this review is to examine the emerging evidences of association between lipid rafts and GPI-anchored proteins, and their relationship with the modulation of important cellular functions such as protein/lipid sorting, signaling mechanisms and with human disease.  相似文献   

5.
6.
7.
Clustering of proteins into membrane microdomains, such as lipid rafts and caveolae, could act as a mechanism for regulating cell signaling and other cellular functions. Certain lipid modifications are hypothesized to target proteins to these domains on the cytoplasmic leaflet of the plasma membrane. This concept has now been tested in living cells using an assay sensitive to the lateral distribution of proteins in membranes over sub-micron distances.  相似文献   

8.
Bacteria rely on numerous basic cellular functions of their target cells to reach successful infection. The recent discovery that the plasma membrane contains specialized microdomains, called lipid rafts, with many specific functions but in particular with the ability to concentrate signaling molecules, has therefore attracted the attention of cellular microbiologists. Since then an increasing number of bacteria and their products have been shown to interact with lipid rafts to promote infection or intoxication. Here we review why certain bacteria and/or their products are attracted toward these lipid microdomains.  相似文献   

9.
The prion protein and lipid rafts   总被引:1,自引:0,他引:1  
Prions are the causative agent of the transmissible spongiform encephalopathies, such as Creutzfeldt-Jakob disease in humans. In these prion diseases the normal cellular form of the prion protein (PrP(C)) undergoes a post-translational conformational conversion to the infectious form (PrP(Sc)). PrP(C) associates with cholesterol- and glycosphingolipid-rich lipid rafts through association of its glycosyl-phosphatidylinositol (GPI) anchor with saturated raft lipids and through interaction of its N-terminal region with an as yet unidentified raft associated molecule. PrP(C) resides in detergent-resistant domains that have different lipid and protein compositions to the domains occupied by another GPI-anchored protein, Thy-1. In some cells PrP(C) may endocytose through caveolae, but in neuronal cells, upon copper binding to the N-terminal octapeptide repeats, the protein translocates out of rafts into detergent-soluble regions of the plasma membrane prior to endocytosis through clathrin-coated pits. The current data suggest that the polybasic region at its N-terminus is required to engage PrP(C) with a transmembrane adaptor protein which in turn links with the clathrin endocytic machinery. PrP(C) associates in rafts with a variety of signalling molecules, including caveolin-1 and Fyn and Src tyrosine kinases. The clustering of PrP(C) triggers a range of signal transduction processes, including the recruitment of the neural cell adhesion molecule to rafts which in turn promotes neurite outgrowth. Lipid rafts appear to be involved in the conformational conversion of PrP(C) to PrP(Sc), possibly by providing a favourable environment for this process to occur and enabling disease progression.  相似文献   

10.
Accumulating reports document the use by pathogens of cholesterol‐enriched lipid microdomains, often called lipid rafts, as cell surface platforms to interact, bind and possibly enter into host cells. The challenge is now to understand what could be the functional role of these domains during pathogen invasion. Are they hijacked as general clustering devices for cellular binding sites and/or do they have other roles? In particular, is their cell signalling capacity activated and used by pathogens? In reverse, could lipid rafts activate bacterial mechanisms required for invasion? These issues will be discussed after an introduction on the current view on lipid rafts.  相似文献   

11.
12.
13.
14.
Emerging themes in lipid rafts and caveolae   总被引:41,自引:0,他引:41  
Galbiati F  Razani B  Lisanti MP 《Cell》2001,106(4):403-411
  相似文献   

15.
Summary The plasma membrane is not a uniform two-dimensional space but includes various types of specialized regions containing specific lipids and proteins. These include clathrin-coated pits and caveolae. The existence of other cholesterol- and glycosphingolipid-rich microdomains has also been proposed. The aim of this review is to illustrate that these latter domains, also called lipid rafts, may be the preferential interaction sites between a variety of toxins, bacteria, and viruses and the target cell. These pathogens and toxins have hijacked components that are preferentially found in rafts, such as glycosylphosphatidylinositol-anchored proteins, sphingomyelin, and cholesterol. These molecules not only allow binding of the pathogen or toxin to the proper target cell but also appear to potentiate the toxic action. We briefly review the structure and proposed functions of cholesterol- and glycosphingolipid-rich microdomains and then describe the toxins and pathogens that interact with them. When possible the advantage conferred by the interaction with microdomains will be discussed.Abbreviation GPI glycosylphosphatidylinositol  相似文献   

16.
The order of rafts. Conference on microdomains, lipid rafts and caveolae   总被引:2,自引:0,他引:2  
Zurzolo C  van Meer G  Mayor S 《EMBO reports》2003,4(12):1117-1121
  相似文献   

17.
18.
Recent studies have suggested that glycosphingolipid (GSL)-cholesterol microdomains in cell membranes may function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are proposed to be involved in membrane trafficking of GPI-anchored proteins and in signal transduction via src-family kinases. Here, the possible roles of GSLs in the physical properties of these microdomains, as well as in membrane trafficking and signal transduction, are discussed. Sphingolipid depletion inhibits the intracellular transport of GPI-anchored proteins in biosynthetic traffic and endocytosis via GPI-anchored proteins. Antibodies against GSLs as well as GPI-anchored proteins co-precipitate src-family kinases. Antibody-mediated cross-linking of GSLs, as well as that of GPI-anchored proteins, induces a transient increase in the tyrosine phosphorylation of several substrates. Thus, GSLs have important roles in lipid rafts.  相似文献   

19.
The plasma membrane of eukaryotic cells contains lipid rafts with protein and lipid compositions differing from the bulk plasma membrane. Several recent proteomic studies have addressed the composition of lipid rafts, but the different definitions used for lipid rafts need scrutinizing before results can be evaluated.  相似文献   

20.
Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes and have been implicated in most signaling processes at the cell surface, but the principles and mechanisms through which lipid rafts influence signaling are not well understood. Recent studies have revealed how lipid rafts are rapidly redistributed and assembled locally in response to extracellular signals, and how components of raft-based signaling domains undergo rapid and regulated rearrangements influencing signal quality, duration, and strength. These findings highlight the exquisitely dynamic properties of signaling domains based on lipid rafts, and suggest that processes of raft trafficking and assembly take central roles in mediating spatial and temporal control of signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号