首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that neurochemical transmission occurring at the synapse is the primary way of sending messages from one neuron to another. Neurotransmitters released from axon terminal in a [Ca2+]0-dependent manner act transsynaptically on the postsynaptic site. The past 30 years have witnessed something of a revolution in the understanding of how neurons communicate with each other. It has been shown that the exocytotic release of transmitters from axon terminals is subject to presynaptic modulation via presynatic hetero- and auto-receptors. For example via stimulation of alpha2-adrenoceptors expressed on varicosities and coupled to G-protein the stimulation-evoked release of different transmitters can be inhibited. This review will focus on nonsynaptic interactions between axon terminals. The present data clearly show that transmitters released from axon terminals without synaptic contact play an important role in the fine tuning of communication between neurons within a neuronal circuit.  相似文献   

2.
The ability of neurons to form a single axon and multiple dendrites underlies the directional flow of information transfer in the central nervous system. Dendrites and axons are molecularly and functionally distinct domains. Dendrites integrate synaptic inputs, triggering the generation of action potentials at the level of the soma. Action potentials then propagate along the axon, which makes presynaptic contacts onto target cells. This article reviews what is known about the cellular and molecular mechanisms underlying the ability of neurons to initiate and extend a single axon during development. Remarkably, neurons can polarize to form a single axon, multiple dendrites, and later establish functional synaptic contacts in reductionist in vitro conditions. This approach became, and remains, the dominant model to study axon initiation and growth and has yielded the identification of many molecules that regulate axon formation in vitro ( Dotti et al. 1988). At present, only a few of the genes identified using in vitro approaches have been shown to be required for axon initiation and outgrowth in vivo. In vitro, axon initiation and elongation are largely intrinsic properties of neurons that are established in the absence of relevant extracellular cues. However, the importance of extracellular cues to axon initiation and outgrowth in vivo is emerging as a major theme in neural development ( Barnes and Polleux 2009). In this article, we focus our attention on the extracellular cues and signaling pathways required in vivo for axon initiation and axon extension.  相似文献   

3.
The formation, maintenance, and plasticity of neural circuits rely upon a complex interplay between progressive and regressive events. Increasingly, new functions are being identified for axon guidance molecules in the dynamic processes that occur within the embryonic and adult nervous system. The magnitude, duration, and spatial activity of axon guidance molecule signaling are precisely regulated by a variety of molecular mechanisms. Here we focus on recent progress in understanding the role of protease-mediated cleavage of guidance factors required for directional axon growth, with a particular emphasis on the role of metalloprotease and γ-secretase. Since axon guidance molecules have also been linked to neural degeneration and regeneration in adults, studies of guidance receptor proteolysis are beginning to define new relationships between neurodevelopment and neurodegeneration. These findings raise the possibility that the signaling checkpoints controlled by proteases could be useful targets to enhance regeneration.  相似文献   

4.
In the developing embryo,nascent axons navigate towards their specific targets to establish the intricate network of axonal connections linking neurons within the mature nervous system.Molecular navigational systems comprising repulsive and attractive guidance cues form chemotactic gradients along the pathway of the exploring growth cone.Axon-bound receptors detect these gradients and determine the trajectory of the migrating growth cone.In contrast to their benevolent role in the developing nervous system,repulsive guidance receptors are detrimental to the axon’s ability to regenerate after injury in the adult.In this review we explore the essential and beneficial role played by the chemorepulsive Wnt receptor,Ryk/Derailed in axon navigation in the embryonic nervous system(the Yin function).Specifically,we focus on the role of Wnt5a/Rykmediated guidance in the establishment of two major axon tracts in the mammalian central nervous system,the corticospinal tract and the corpus callosum.Recent studies have also identified Ryk as a major suppressor of axonal regeneration after spinal cord injury.Thus,we also discuss this opposing aspect of Ryk function in axonal regeneration where its activity is a major impediment to axon regrowth(the Yang function).  相似文献   

5.
Formation of the retinal ganglion cell and optic fiber layers   总被引:3,自引:0,他引:3  
The early development of retinal ganglion cell and the optic fiber layers has been studied by examining the morphology of differentiating retinal ganglion cells using immunoelectron microscopy and a monoclonal antibody against neuron-specific beta-tubulin. This antibody identified retinal ganglion cells during the stages of their most active differentiation and axonogenesis prior to maturation of other retinal neurons. The changing morphology of retinal ganglion cells during these early stages is consistent with a differentiation sequence in which axonogenesis and translocation of the cell body to the vitreal surface occur while the cell is still attached to the vitreal margin through its vitreal endfeet. Thus, the mechanism of retinal ganglion cell axon generation and soma migration to the vitreal surface appears to involve maintenance of this attachment which may act as both a focus for axon differentiation and an anchor for directed nuclear translocation to the vitreal margin.  相似文献   

6.
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.  相似文献   

7.
The highly differentiated structure of the neuron poses special problems for the intracellular movement of molecules throughout the cell. Molecular transport distances from the synthesizing neuron cell body along the axon (which has no substantial synthetic capabilities) to the axon terminal are very great. The transported substances, transport support structures, translocator motors, and control elements are currently the focus of intense research. Interruption of this flow of molecules could have disastrous effects upon the cell and ultimately the organism resulting in neuropathological conditions. Calcium plays a critical role in modulating fast-axonal transport (FAT) speeds. Before discussing the effect of calcium on FAT, we summarize our broad perspective on the role of axonal transport in neurologic disease.  相似文献   

8.
9.
While ultimately, focus must be placed on experimentation using adult systems, vastly important clues to regeneration can be found in the study of the embryonic nervous system. In embryonic systems, axonal regeneration is successful before a critical period, and numerous advances have resulted from the study of isolated cells and tissues in vitro. Studies over many decades from the laboratory of Paul C. Letourneau have probed the cellular and molecular phenomena involved in axon outgrowth and guidance in the embryonic central and peripheral nervous system and have laid the framework for many current advances in regeneration research. Letourneau’s pioneering work related to growth cone behavior, guidance, and regeneration has resulted in considerable contributions toward our understanding not only of cellular mechanisms that underlie axon growth, but also of the specific areas of study that require attention to accomplish future breakthroughs. The present article summarizes some of the major contributions from Paul Letourneau and his team in the area of axonal regeneration.  相似文献   

10.
Developmental axon pruning is widely used in constructing the nervous system. Accordingly, diverse mechanisms are likely employed for various forms of axon pruning. In the Drosophila mushroom bodies (MB), gamma neurons initially extend axon branches into both the dorsal and medial MB axon lobes in larvae. Through a well-orchestrated set of developmental events during metamorphosis, axon branches to both lobes degenerate prior to the formation of adult connections. Here, we analyze ultrastructural changes underlying axon pruning by using a genetically encoded electron microscopic (EM) marker to selectively label gamma neurons. By inhibiting axon pruning in combination with the use of this EM marker, we demonstrate a causal link between observed cellular events and axon pruning. These events include changes in axon ultrastructure, synaptic degeneration, and engulfment of degenerating axon fragments by glia for their subsequent breakdown via the endosomal-lysosomal pathway. Interestingly, glia selectively invade MB axon lobes at the onset of metamorphosis; this increase in cell number is independent of axon fragmentation. Our study reveals a key role for glia in the removal of axon fragments during developmental axon pruning.  相似文献   

11.
12.
13.
在特定环境和神经元自身生长能力激活的条件下,受损的外周神经能自我再生,而中枢神经系统却无法实现。受损的外周神经元生长能力的激活受多种因素调节,包括内在因素(如胞浆环磷酸腺苷(cAMP)水平)和外在因素(如细胞外基质、神经营养因子和细胞因子等)。该文主要对现阶段外周神经再生的内在及外在因素的分子机制进行综述。  相似文献   

14.
Rac GTPases and their effectors control cellular morphogenesis in a wide range of developmental contexts by regulating the structure and dynamics of the actin cytoskeleton. Although much is known about the biochemistry of Racs and Rac regulators, less is known about how Racs control cellular morphogenesis, including axon development, in vivo. Recent loss-of-function genetic studies using model organisms have shown that Racs and their effectors are required for multiple aspects of axon development, including axon outgrowth, axon guidance and axon branching. Interestingly, these studies have also revealed that Rac activity is required to prune spurious axons and branches. Analyses of Racs and their upstream and downstream effectors suggest that Rac signaling is complex. Different neurons utilize distinct combinations of upstream Rac regulators during axon development, possibly reflecting responses to different axon path-finding signals, and Racs use distinct downstream effectors to mediate different aspects of axon development, possibly reflecting differential regulation of the lamellipodial and filopodial growth-cone actin-cytoskeleton domains underlying axon developmental events.  相似文献   

15.
BackgroundThe extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration.Scope of reviewHere, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury.Major conclusionsThe brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis.General significanceGenetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury.This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

16.
Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.  相似文献   

17.
The formation of axon/dendrite polarity is critical for the neuron to perform its signaling function in the brain. Recent advance in our understanding of cellular and molecular mechanisms underlying the development and maintenance of neuronal polarity has been greatly facilitated by the use of the culture system of dissociated hippocampal neurons. Among many polarization-related proteins, we here focus on the mammalian LKB1, the counterpart of the C. elegans Par-4, which is an upstream regulator among six Par (partitioning-defective) genes that act as master regulators of cell polarity in different cell types across evolutionary distant species. Recent studies have identified LKB1 and its downstream targets SAD/MARK kinases (mammalian homologs of Par-1) as key regulators of neuronal polarization and axon development in cultured neurons and in developing cortical neurons in vivo. We will review the properties of and interactions among proteins in this LKB1-SAD/MARK pathway, drawing upon information obtained from both neuronal and non-neuronal systems. Due to central role of the protein kinase A-dependent phosphorylation of LKB1 in the activation of this pathway, we will review recent findings on how cAMP and cGMP signaling may serve as antagonistic second messengers for axon/dendrite development, and how these cyclic nucleotides may mediate the action of extracellular polarizing factors by modulating the activity of the LKB1-SAD/MARK pathway.  相似文献   

18.
《BBA》2022,1863(5):148545
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.  相似文献   

19.
The formation of a growth cone at the tip of a transected axon is a crucial step in the subsequent regeneration of the amputated axon. During this process, the transected axon is transformed from a static segment into a motile growth cone. Despite the importance of this process for regeneration of the severed axon, little is known about the mechanisms underlying this transformation.  相似文献   

20.
The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号