首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape.  相似文献   

2.
Fire has impact on reptile communities with marked shifts in community composition between burnt and unburnt areas. These shifts are often related to the preference of reptile species throughout early or late post-fire successional habitats. Areas located in transition zones between bioregions harbor complex reptile communities with a mixture of biogeographic affinities. In these biogeographic crossroads, since fire simplifies the habitat structure, we expected simpler (lower alpha diversity) and more similar (lower beta diversity) reptile communities within burnt than within unburnt localities. We have tested this hypothesis in a transition zone between the Atlantic and Mediterranean bioregions in northern Portugal. Reptiles were surveyed in five localities (8 times per locality) along fire edges in which each locality was composed of one burnt and one unburnt transect. In total, 588 reptiles from 10 species were recorded. Unburnt transects had higher alpha and beta diversity and higher relative abundance of non-Mediterranean individuals than did burnt transects. A redundancy analysis also showed contrasting responses of Mediterranean and non-Mediterranean species, the former increasing and the latter decreasing after fire. Our study demonstrates that fire reduced the complexity of the reptile community, with benefits towards Mediterranean species due to its environmental preferences and long evolutionary association to fire. In biogeographic crossroads such as the study area, the retention of long unburnt vegetation is expected to maintain more diverse reptile communities.  相似文献   

3.
4.
《Acta Oecologica》2000,21(1):1-12
Extensive wildfires have affected the Valencia region in the last two decades. A large portion of the burnt areas has been localised in old fields. Although Mediterranean communities are usually resilient to fire and recover very quickly to the pre-fire state, burnt old fields with a low number of species could show poor recovery capacity. The response capacity of these systems to fire, and, especially, the role of the native herbaceous Brachypodium retusum were studied. Two years after fire, plant cover reached a value of 56 %. Resprouter species were more important in number and in specific cover. B. retusum represented the species with the highest contribution to total plant cover for all the study period. Total biomass in burnt plots was always lower than in unburnt plots. However, B. retusum green biomass showed a quick recovery to pre-disturbance levels, and below-ground biomass was similar in burnt and unburnt plots. Reproductive biomass greatly increased in burnt with respect to unburnt plots during the first post-fire year, with no stalk production in unburnt plots. B. retusum may be considered a promising species for the restoration of extremely degraded lands because of its high resilience to fire.  相似文献   

5.
Semi-natural open habitats have drastically changed in the last few decades due to agricultural intensification and rural depopulation. Steppe-birds, and especially those adapted to primary stages of vegetation succession, are threatened by an increase in scrub cover, and management actions are being applied to reverse scrub encroachment and restore habitat suitability in semi-natural open habitats. In this paper we evaluated for the first time, the long-term effects of a wildfire on habitat structure, vegetation productivity, and the associated response of an endangered scrub-steppe specialist bird, the Dupont’s Lark Chersophilus duponti. Wildfire occurred in a Mediterranean steppe of central Spain dominated by permanent community of dwarf cushions scrubs. Bird abundance was evaluated by line transects in the burnt and unburnt areas 3 years prior to the fire and 4 and 7 years after the fire. We quantified changes in habitat structure at fine scale level through vegetation sampling points and in vegetation productivity by estimating the Normalized Difference Vegetation Index (NDVI). Fire had strong effects for at least up to 4 years after the fire, when lower NDVI values, less scrub cover and fewer, but not significant, number of males were detected in the burnt area with respect to the pre-fire conditions. Seven years after fire most vegetation variables measured did not differ between areas, number of males detected within the burnt area was recovered and NDVI values in burnt area were slightly recovered but were significantly lower than in control area. Slow regeneration of the scrub cover after fire explained the unsuccessful occupation of the burnt area by the Dupont’s Lark up to several years after fire. The more dispersed and shorter habitat created by fire 7 years after the fire seems to be more suitable for the species than that in control areas. The large number of males around the burnt area may have played a role in the recolonization process. In sum, vegetation recovery and the presence of a low scrub-steppe specialist, as the Dupont’s lark, suggests that fire management could be integrated into conservation plans to effectively manage scrub encroachment processes in Mediterranean scrub-steppes.  相似文献   

6.
Fire‐induced changes in canopy openness may affect sunlight penetration to the forest floor, and thus the operative temperatures available to terrestrial ectotherms. We examined thermal regimes for two types of ectotherms: diurnally active species that utilize sun‐exposed patches to regulate their body temperatures, and nocturnally active species that depend upon solar radiation striking the rocks under which they shelter. We measured canopy openness, shrub height, radiation transmission and operative environmental temperatures in the open and inside reptile retreat‐sites, at 24 study sites in eucalypt forests in two regions (Gosford and Yengo) in south‐eastern Australia. All sites were last burnt in 2000–2001, but had experienced different fire frequencies (1–4 fires over the previous 37 years). In Gosford, higher fire frequencies reduced canopy openness and radiation transmission at ground and shrub level, and thus reduced environmental temperatures and the thermal quality of reptile habitats. Our modelling based on thermal preferenda of an endangered snake species (the broad‐headed snake Hoplocephalus bungaroides) suggests that increased fire frequency at Gosford halved the amount of time an animal could spend within its preferred (set‐point) range, regardless of whether it thermoregulated beneath rocks or basked out in the open. At Yengo, however, fire frequency did not affect the thermal quality of reptile habitats. Thus, the effects of fire frequency on forest structure and the thermal environment at ground level differed between adjacent areas, and relatively small changes in canopy openness translated into major effects on thermoregulatory opportunities for reptiles. Although fire is a useful management tool for creating open habitats, we need to understand more about the effects of fire frequency on vegetation structure and thermal environment before we can use fire to manage habitats for reptiles.  相似文献   

7.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

8.
Fire regimes are changing throughout the world. Changed fire patterns across northern Australian savannas have been proposed as a factor contributing to recent declines of small‐ and medium‐sized mammals. Despite this, few studies have examined the mechanisms that underpin how species use habitat in fire‐affected landscapes. We determined the habitats and resources important to the declining golden‐backed tree‐rat (Mesembriomys macrurus) in landscapes partially burnt by recent intense fire. We aimed to (i) compare the relative use of rainforest and savanna habitats; (ii) examine the effect of fire history on use of savanna habitats; and (iii) identify key foraging and denning resources. Habitat selection was examined by comparing the availability of eight habitat types around real (used) and generated (available) location points. Individuals used a range of habitats, but consistently selected long unburnt rainforest in preference to recently burnt savanna (1–12 months post‐fire); however, recently burnt savanna was used in preference to long unburnt savanna. Tree‐rats foraged in Terminalia hadleyana, Planchonia rupestris, Celtis philippensis and Owenia vernicosa, tree species that are found in a variety of habitat types. Individuals used a range of den sites, including cliffs, trees, logs, scree and stags found throughout the study area. Although multiple factors may have led to the decline of Mes. macrurus across its range, these results are consistent with the idea that changes in the savanna structure as a consequence of contemporary fire patterns could also have a role. The continued persistence of Mes. macrurus in the northwest Kimberley may be supported by land management strategies that conserve fruiting and hollow‐bearing trees, and maintain the availability of fire‐sensitive vegetation types.  相似文献   

9.
Aim To describe the nexus between Aboriginal landscape burning and patterns of habitat use by kangaroos in a tropical savanna habitat mosaic, and to provide evidence to evaluate the claim that Aboriginal landscape burning is a game management tool. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the monsoon tropics of northern Australia. Methods The abundance of kangaroo scats was recorded throughout a landscape burnt by Aboriginal people, and used as a proxy for the intensity of habitat use by kangaroos. Scat abundance was assessed along field traverses totalling 112 km, at three time periods: (1) 1–4 weeks following mid‐dry season burning (July 2003); (2) in the late dry season (November 2003); and (3) in the following mid‐dry season (July 2004). We compared the intensity with which kangaroos used burnt vs. unburnt areas in various habitat types, with time since mid‐dry season burning. Scats were collected from areas that had been burnt to a varying extent and the abundance of carbon and nitrogen stable isotopes (δ13C and δ15N) and carbon to nitrogen ratios (C : N) determined. Results There was clear evidence of an interaction between burning and habitat type on the abundance of kangaroo scats. Scats were much more abundant in burnt vs. unburnt areas in the moist habitats, but the opposite effect was observed in the dry rocky habitats, with higher scat abundance in unburnt areas. This interactive effect of burning and habitat type on scat abundance was observed immediately (< 4 weeks) following fire, and was still present one year later. High concentrations of nitrogen in resprouting grasses indicate that burnt areas may provide kangaroos with greater access to nutrients. The isotopic composition of scats indicates that kangaroos feeding in extensively burnt areas were consuming more grasses, and possibly sedges, than kangaroos feeding in unburnt areas. Main conclusions The fine‐scale mosaic of burnt and unburnt areas created by mid‐dry season Aboriginal landscape burning has clear effects on the distribution of kangaroos. Kangaroos move into burnt moist habitats and away from burnt dry, rocky habitats. Isotopic analysis of scats suggests that the mechanism driving this effect is the increased abundance of nitrogen rich grasses in burnt moist habitats.  相似文献   

10.
Wildfire and grazing by invasive herbivores can influence habitat suitability for ground-dwelling fauna, such as reptiles. Australia has a large and diverse reptile fauna, with the Australian Alps bioregion in the southeast of the continent supporting a disproportionately high number of threatened species. In this bioregion, many species are threatened by fire, habitat loss or modification, and invasive species. The range of one such threatened endemic lizard, Cyclodomorphus praealtus (family Scincidae), was impacted by the 2019–20 megafires and is also subject to widespread grazing by invasive species. We investigated the relationship between C. praealtus site occupancy and fire and grazing. We completed 2045 surveys across 120 sites over 4 years, detecting the species at 43% of sites and increasing the species' known geographic range. Using single season detection occupancy models, we found C. praealtus occupancy was not associated with elevation, vegetation height or whether the site was burnt, but was positively associated with grazing activity. Our results indicate that C. praealtus has the capacity to persist following a single fire in some cases, and that habitats with high occupancy probabilities are subject to high grazing pressure. However, our results do not rule out more nuanced impacts associated with these disturbances, which affect a large proportion of C. praealtus' habitat. Our cumulative detection probability calculations revealed that considerable survey effort is often required to determine C. praealtus site occupancy. We therefore recommend that impact assessments assume species presence within areas of suitable habitat within the species' range. Our study improves our understanding of disturbance impacts on C. praealtus' occupancy, while demonstrating the need for sufficiently resourced impact assessments for cryptic and threatened species.  相似文献   

11.
Fire has a varied influence on plant and animal species through direct (e.g. fire‐induced mortality) and indirect (e.g. modification of habitat) effects. Our understanding of the influence of fire regime on invertebrates and their response to fire‐induced modifications to habitat is poor. We aimed to determine the response of a beetle family (Coleoptera: Cerambycidae) to varying fire treatments and hypothesised that the abundance of cerambycid beetles is influenced by fire frequency due to modifications in habitat associated with the fire treatments. Arthropods were sampled across 3 months in annually and triennially burnt areas (treatments starting in 1952 and 1973 respectively), an area unburnt since 1946, and a former unburnt treatment, burnt by wildfire in 2006. Eleven different cerambycid taxa were collected using flight intercept panel traps, dominated by three species (Ipomoria tillides, Adrium sp. and Bethelium signiferum) which made up 99% of individuals collected. Over the sampling period the long unburnt treatment had significantly lower species richness than the triennial and wildfire treatments. Cerambycid abundance was significantly higher in the triennially burnt treatment than in all other fire treatments. Ipomoria tillides was more abundant in both frequently burnt treatments, Adrium sp. was more common in triennially burnt areas, whereas B. signiferum, was more common in the wildfire affected treatment. Some, but not all, cerambycid beetles were more common in areas with a more open understorey (i.e. resulting from frequent burning), and lower tree basal area, as this likely influences their ability to fly easily between food sources. Cerambycid abundance was positively related to the volume of coarse woody debris and healthy tree crowns. Cerambycid beetles were clearly influenced by historic fire regime, suggesting that changes in fire regime can potentially have a profound influence on arthropod assemblages, and subsequent influences on ecosystem processes, which are currently poorly understood.  相似文献   

12.
Unburnt patches within burnt landscapes are expected to provide an important resource for fauna, potentially acting as a refuge from direct effects of fire and allowing animals to persist in burnt landscapes. Nevertheless, there is little information about the way refugia are used by fauna and how populations may be affected by them. Planned burns are often patchy, with unburnt areas generally associated with gully systems providing a good opportunity to study faunal use of refugia. We used a before–after control‐impact design associated with a planned burn in south eastern Australia to investigate how two small mammal species, the bush rat Rattus fuscipes and agile antechinus Antechinus agilis, used unburnt gully systems within a larger burnt area. We tested three alternative hypotheses relating to post‐fire abundance: (i) active refugia – abundance would increase in unburnt patches because of a post‐fire shift of individuals from burnt to unburnt areas; (ii) passive refugia – abundance in unburnt patches would remain similar to pre‐fire levels; and (iii) limited or no refugia – abundance would reduce in unburnt patches related to the change induced by fire in the wider landscape. We found the two species responded differently to the presence of unburnt refugia in the landscape. Relative to controls, fire had little effect on bush rat abundance in gullies, supporting hypothesis 2. In contrast, agile antechinus abundance increased in gullies immediately post‐fire consistent with a shift of individuals from burnt parts of the landscape, supporting hypothesis 1. Differences in site fidelity, habitat use and intraspecific competition between these species are suggested as likely factors influencing responses to refugia. The way unburnt patches function as faunal refugia and the subsequent influence they have on post‐fire population dynamics, will to some extent depend on the life history attributes of individual species.  相似文献   

13.
Abstract Following a wildfire in 17–25‐year‐old regrowth karri (Eucalyptus diversicolor) forest in the southwest of Western Australia, plots were established in burnt and similarly aged unburnt forest to monitor the fruiting of macrofungi. Thirty‐six plots on 10 sites (five burnt, five unburnt) were surveyed over a 5‐year period. Plots were surveyed every 2 weeks in the macrofungal fruiting season (April to October) and monthly for the remainder of each year. A total of 332 species were recorded. Fire did not impact significantly on mean species richness. However, a distinct mycoflora was recorded on burnt sites, and species composition on burnt sites changed substantially for each year following the fire and after 5 years was still different from that on unburnt sites. Nineteen percent of species recorded were regarded as being present as a direct result of the fire. The study also demonstrated the variable nature of macrofungal sporophore production in the absence of disturbance and the importance of regular sampling. Five distinct succession groups of post‐fire fungi were recognized. The adaptive traits of post‐fire fungi in relation to fire and the management of fire for macrofungal diversity are discussed.  相似文献   

14.
The composition of mammalian communities in Australia's Eucalyptus forests and woodlands is known to be affected by fire. However, there are few published studies that compare mammal assemblages in recently burnt and long‐unburnt forests because there are few areas with long‐term fire history data. Understanding the value of long‐unburnt forest is important because it is becoming rare in fire‐prone regions of the world, such as south‐eastern Australia, partly because of the widespread use of prescribed burning. We deployed wildlife cameras for 28 trap‐nights at each of 81 sites that ranged from 0.5 to at least 96 years since the last fire. We recorded a total of 15 native mammal species. At least one mammal species was recorded at 80 of the 81 sites. Significantly more species were detected at long‐unburnt sites (>96 years since fire) than sites 0.5–12 years since the last fire. Species composition varied significantly between sites 0.5–12 years and >96 years since the last fire but did not vary between sites 0.5–2 years and 6–12 years since the last fire. Although there was not one category of time since fire (i.e. 0.5–2 years, 6–12 years and >96 years) in which all 15 native mammal species were recorded, long‐unburnt sites were significantly more important for the occurrence of seven mammal species; intermediate and recently burnt sites were significantly more important for one species. Our results suggested that, while a diversity of fire ages is important for conserving mammalian diversity, long‐unburnt forests and woodlands (which comprised only 8% of our study area) are disproportionately important for mammal conservation. Our results add to a growing body of the literature from south‐eastern Australia, suggesting that remaining long‐unburnt forest should be afforded protection from fire and more forest should be transitioned to long unburnt.  相似文献   

15.
One of the main factors involved in the decline in the European wild rabbit in the Iberian Peninsula is the loss of suitable habitats caused by abandonment of agricultural and grazing activities. Nowadays, Mediterranean landscapes suffer from wildfires that affect extensive areas and produce considerable habitat changes. However, little is known about the influence of wildfires and post-fire treatments on rabbit abundance to address policies to recover their populations. To do so, we studied abundances of this species in four types of plots during three consecutive years after a wildfire in Catalonia (NE Spain): (A) unburnt forests, (B) burnt forests with removal of burnt trees but with branches left, (C) burnt forests with removal of burnt trees and branches, and (D) non-forested burnt plots. Rabbits progressively colonised burnt plots, where their abundance increased for at least 5 years after the fire, but decreased or even disappeared in unburnt ones, indicating that forest fires have a positive effect on rabbit populations. Although abundances did not differ between the three burnt plot types, plots with removal of burnt branches had the highest increase in abundance. In addition, soil covered by branches or by dense vegetation appeared negatively correlated with abundance, indicating that this could hinder rabbit movements, while some plant species could benefit rabbits by providing high quality food. Thus, post-fire treatments favourable to rabbit populations might therefore be a good way of increasing the conservation and economic value of areas affected by forest fires.  相似文献   

16.
Aim Two main mechanisms may explain post‐disturbance species colonization patterns of early successional habitats such as those originated by wildfires. First, post‐disturbance colonization is not limited by the dispersal ability of the species to reach the newly created open areas and, secondly, colonization is limited by dispersal. Under the first hypothesis, we expect, at a regional scale, to find similar post‐disturbance communities to develop on recently burned sites. However, colonization limited by dispersal will lead to strong between‐site variations in species composition. Location To test these hypotheses, we studied the post‐fire colonization patterns of nine open‐habitat bird species in eight distantly located wildfires in the north‐eastern Iberian Peninsula. Methods We censused post‐fire bird composition by means of field transects and identified potential colonization sources from species–habitat suitability maps derived from atlas data. Results Our results showed strong significant differences in post‐fire species composition between burnt areas. Burnt areas located in areas with low probability of species presence before the fire event showed lower species occurrence and richness after the fire. Main conclusions These results do not support the idea that early successional stages and open habitats have a homogeneous community structure at regional scales and suggest that dispersal is a key constraint determining bird colonization of post‐fire habitats. Further attention should be paid to landscape heterogeneity as a key factor in determining population dynamics of open‐habitat species in the light of current and future land‐use changes in Mediterranean regions.  相似文献   

17.
Abstract The Tasmanian bettong, Bettongia gaimardi, is a mycophagous marsupial that occurs in fire-prone dry sclerophyll forests. Previous studies have demonstrated that some of the hypogeous fungi on which it feeds become abundant soon after fire, and have suggested that it might depend on regular burning of its habitat. The longer-term effects of burning on B. gaimardi and its food supply were evaluated by comparing six sites, matched for soil, vegetation and climate, in southeastern Tasmania that had been left unburnt for periods ranging from 1 to 50 years. At each site, the density of B. gaimardi diggings was measured and sporocarps of hypogeous fungi were surveyed. Abundance of hypogeous sporo-carps was low at sites 2 years or less post-fire, but was high at sites 4 years and more post-fire. Species richness was similarly low at recently burnt sites, an effect that was due to the absence of many shallow-fruiting taxa. All species (with one exception) present at recently burnt sites were also present in long-unburnt sites. Densities of B. gaimardi diggings were highest at a very recently burnt (<1 year) site and at a site left unburnt for 10 years. These trends suggest that a high frequency of burning may be unfavourable to B. gaimardi in the forest type investigated in this study.  相似文献   

18.
The great desert skink (Liopholis kintorei) of the Egerniinae subfamily (Reptilia: Scincidae) is a communal burrowing lizard that inhabits arid spinifex grasslands in central Australia. Great desert skink activity is centred in and around the burrows which are inhabited for many years. However, it is not known whether skinks select burrow sites with specific attributes or how continuing occupancy of burrows is influenced by the surrounding habitat; especially post‐fire, when plant cover is reduced. Here, we test whether great desert skink burrows in areas burnt 2 years previously and in longer unburnt areas are associated with particular habitat attributes, and whether there are differences between occupied and recently abandoned burrow sites. Vegetation composition, cover and soil surface characteristics at 56 established great desert skink burrows, including occupied and recently unoccupied burrows, were compared with 56 random nearby non‐burrow control sites. Burrow sites had higher plant cover compared with the surrounding landscape in both recently burnt and longer unburnt areas and were more likely to be associated with the presence of shrubs. Soil stability and infiltration were also higher at burrow sites. However, we found no evidence that burrows with lower cover were more likely to be abandoned. Our results suggest that great desert skinks may actively select high cover areas for burrow construction, although differences between burrow and control sites may also partly reflect local changes to plant cover and composition and soil properties resulting from burrow construction and long‐term habitation of a site. Further research should determine if burrows with shrubs or higher plant cover provide greater protection from predators, more structural stability for burrow construction, increased prey abundance or other benefits. We recommend that maintenance of areas with relatively higher plant cover be prioritized when managing great desert skink habitat.  相似文献   

19.
We studied evenness and species richness in two assemblages of soil arthropods at six contiguous study plots in Mediterranean ecosystems of central Italy, three of these plots being burnt and three unburnt. We analysed these aspects of community structure by diversity–dominance diagrams comparisons made through analysis of covariance on respective slopes and ordinate intercepts. We observed consistent patterns in both Collembola and Oniscidea assemblages, either in burnt and unburnt plots. Evenness did not change among study plots and across habitats, either before or after fire, whereas species' composition was significantly altered by fire. Results from our study implied that evenness and species diversity are clearly affected in a different and independent way by fire. Hence, it is not acceptable to focus on only the evenness when looking at the effects of controlled fires for environmental management reasons.  相似文献   

20.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号