首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Invariant NKT (iNKT) cells are glycolipid-reactive lymphocytes with anti-microbial properties. Toll-like receptor (TLR)-primed antigen-presenting cells are known to activate iNKT cells, however, the expression and function of TLRs in iNKT cells remain largely unknown. Here, we show that TCR-activation of murine iNKT cells by α-GalactosylCeramide (α-GalCer) or anti-CD3 antibodies can result in increased expression of TLR genes. TLR3, 5 and 9-mediated costimulation of TCR-preactivated iNKT cells resulted in enhancement of iNKT cell activation, as determined by their cytokine production. Expression of TLR3 and 9 at protein level was also confirmed in TCR-activated iNKT cells. Furthermore, TCR-preactivation followed by TLR9-costimulation of iNKT cells increased their ability to induce maturation of dendritic cells. Thus, our findings show that iNKT cells can up-regulate their TLR expression upon TCR activation and a subsequent TLR-signaling in these cells can lead to their enhanced activation, suggesting a new possible mode of iNKT cell activation.  相似文献   

2.
CD1d-restricted Vα14 invariant NKT (iNKT) cells play an important role in the regulation of diverse immune responses. MicroRNA-mediated RNA interference is emerging as a crucial regulatory mechanism in the control of iNKT cell differentiation and function. Yet, roles of specific microRNAs in the development and function of iNKT cells remain to be further addressed. In this study, we identified the gradually increased expression of microRNA-150 (miR-150) during the maturation of iNKT cells in thymus. Using miR-150 knockout (KO) mice, we found that miR-150 deletion resulted in an interruption of iNKT cell final maturation in both thymus and periphery. Upon activation, iNKT cells from miR-150KO mice showed significantly increased IFN-γ production compared with wild-type iNKT cells. Bone marrow-transferring experiments demonstrated the cell-intrinsic characteristics of iNKT cell maturation and functional defects in mice lacking miR-150. Furthermore, miR-150 target c-Myb was significantly upregulated in miR-150KO iNKT cells, which potentially contribute to iNKT cell defects in miR-150KO mice. Our data define a specific role of miR-150 in the development and function of iNKT cells.  相似文献   

3.
The development of airway hyperreactivity (AHR), a cardinal feature of asthma, requires the presence of invariant NKT (iNKT) cells. In a mouse model of asthma, we demonstrated that the induction of AHR required ICOS costimulation of iNKT cells. ICOS was highly expressed on both naive and activated iNKT cells, and expression of ICOS was greater on the CD4(+) iNKT than on CD4(-) iNKT cells. Furthermore, the number of CD4(+) iNKT cells was significantly lower in spleens and livers of ICOS(-/-) and ICOSL(-/-) mice, and the remaining iNKT cells in ICOS(-/-) mice were dysfunctional and failed to reconstitute AHR when adoptively transferred into iNKT cell-deficient Jalpha18(-/-) mice. In addition, direct activation of iNKT cells with alpha-GalCer, which induced AHR in wild-type mice, failed to induce AHR in ICOS(-/-) mice. The failure of ICOS(-/-) iNKT cells to induce AHR was due in part to an inability of the ICOS(-/-) iNKT cells to produce IL-4 and IL-13 on activation. Moreover, survival of wild-type iNKT cells transferred into ICOSL(-/-) mice was greatly reduced due to the induction of apoptosis. These results indicate that ICOS costimulation plays a major role in induction of AHR by iNKT cells and is required for CD4(+) iNKT cell function, homeostasis, and survival in the periphery.  相似文献   

4.
iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the antifungal iNKT cell response does not require fungal lipids. Instead, Dectin-1- and MyD88-mediated responses to β-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-γ. Innate recognition of β-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma, and Alternaria, suggesting that this mechanism may broadly define the basis for antifungal iNKT cell responses.  相似文献   

5.
Invariant NKT (iNKT) cells can prevent diabetes by inhibiting the differentiation of anti-islet T cells. We recently showed that neither iNKT cell protection against diabetes nor iNKT cell inhibition of T cell differentiation in vitro requires cytokines such as IL-4, IL-10, IL-13, and TGF-beta. In contrast, cell-cell contacts were required for iNKT cell inhibition of T cell differentiation in vitro. The present study was designed to determine whether the CD1d molecule is involved in the inhibitory function of iNKT cells. Experiments were performed in vitro and in vivo, using cells lacking CD1d expression. The in vivo experiments used CD1d-deficient mice that were either reconstituted with iNKT cells or expressed a CD1d transgene exclusively in the thymus. Both mouse models had functional iNKT cells in the periphery, even though CD1d was not expressed in peripheral tissues. Surprisingly, both in vitro inhibition of T cell differentiation by iNKT cells and mouse protection against diabetes by iNKT cells were CD1d-independent. These results reveal that iNKT cells can exert critical immunoregulatory effects in the absence of CD1d recognition and that different molecular interactions are involved in iNKT cell functions.  相似文献   

6.
Va14Ja18 natural T (iNKT) cells rapidly elicit a robust effector response to different glycolipid Ags, with distinct functional outcomes. Biochemical parameters controlling iNKT cell function are partly defined. However, the impact of iNKT cell receptor beta-chain repertoire and how alpha-galactosylceramide (alpha-GalCer) analogues induce distinct functional responses have remained elusive. Using altered glycolipid ligands, we discovered that the Vb repertoire of iNKT cells impacts recognition and Ag avidity, and that stimulation with suboptimal avidity Ag results in preferential expansion of high-affinity iNKT cells. iNKT cell proliferation and cytokine secretion, which correlate with iNKT cell receptor down-regulation, are induced within narrow biochemical thresholds. Multimers of CD1d1-alphaGalCer- and alphaGalCer analogue-loaded complexes demonstrate cooperative engagement of the Va14Ja18 iNKT cell receptor whose structure and/or organization appear distinct from conventional alphabeta TCR. Our findings demonstrate that iNKT cell functions are controlled by affinity thresholds for glycolipid Ags and reveal a novel property of their Ag receptor apparatus that may have an important role in iNKT cell activation.  相似文献   

7.
NKT cells are a small subset of regulatory T cells conserved in humans and mice. In humans they express the Valpha24Jalpha18 invariant chain (hence invariant NKT (iNKT) cells) and are restricted by the glycolipid-presenting molecule CD1d. In mice, iNKT cells may enhance or inhibit anti-infectious and antitumor T cell responses but suppress autoimmune and alloreactive responses. We postulated that iNKT cells might also modulate human alloreactive responses. Using MLR assays we demonstrate that in the presence of the CD1d-presented glycolipid alpha-galactosylceramide (alphaGC) alloreactivity is enhanced (37 +/- 12%; p < 0.001) in an iNKT cell-dependent manner. iNKT cells are activated early during the course of the MLR, presumably by natural ligands. In MLR performed without exogenous ligands, depletion of iNKT cells significantly diminished the alloresponse in terms of proliferation (58.8 +/- 24%; p < 0.001) and IFN-gamma secretion (43.2 +/- 15.2%; p < 0.001). Importantly, adding back fresh iNKT cells restored the reactivity of iNKT cell-depleted MLR to near baseline levels. CD1d-blocking mAbs equally reduced the reactivity of the iNKT cell-replete and -depleted MLR compared with IgG control, indicating that the effect of iNKT cells in the in vitro alloresponse is CD1d-dependent. These findings suggest that human iNKT cells, although not essential for its development, can enhance the alloreactive response.  相似文献   

8.
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.  相似文献   

9.
The invariant NKT (iNKT) cell lineage contains CD4(+) and CD4(-) subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for TCR-induced activation of the Ras-ERK1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. In this study, we report severe decreases of iNKT cells in RasGRP1(-/-) mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1(-/-) mice, there is a selective absence of the CD4(+) subset. Furthermore, RasGRP1(-/-) iNKT cells are defective in TCR-induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development but also for the generation/maintenance of the CD4(+) iNKT cells. Our data provide genetic evidence that the CD4(+) and CD4(-) iNKT cells are distinct sublineages with differential signaling requirements for their development.  相似文献   

10.
11.
CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-beta, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-beta and IL-10 on human iNKT cells, because TGF-beta suppressed iNKT cell activation and proliferation and IFN-gamma production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses.  相似文献   

12.
Invariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D). Therapeutic means to reduce or deplete iNKT cells could treat inflammatory diseases, while approaches to promote their activation may have potential in certain infectious diseases, cancer or autoimmunity. Thus, we developed invariant TCR-specific monoclonal antibodies to better understand the role of iNKT cells in disease. We report here the first monoclonal antibodies specific for the mouse invariant TCR that by modifying the Fc construct can specifically deplete or activate iNKT cells in vivo in otherwise fully immuno-competent animals. We have used both the depleting and activating version of the antibody in the NOD model of T1D. As demonstrated previously using genetically iNKT cell deficient NOD mice, and in studies of glycolipid antigen activated iNKT cells in standard NOD mice, we found that antibody mediated depletion or activation of iNKT cells respectively accelerated and retarded T1D onset. In BALB/c mice, ovalbumin (OVA) mediated airway hyper-reactivity (AHR) was abrogated with iNKT cell depletion prior to OVA sensitization, confirming studies in knockout mice. Depletion of iNKT cells after sensitization had no effect on AHR in the conducting airways but did reduce AHR in the lung periphery. This result raises caution in the interpretation of studies that use animals that are genetically iNKT cell deficient from birth. These activating and depleting antibodies provide a novel tool to assess the therapeutic potential of iNKT cell manipulation.  相似文献   

13.
Invariant NKT (iNKT) cells have been implicated in the regulation of autoimmune diseases. In several models of type 1 diabetes, increasing the number of iNKT cells prevents the development of disease. Because CD8 T cells play a crucial role in the pathogenesis of diabetes, we have investigated the influence of iNKT cells on diabetogenic CD8 T cells. In the present study, type 1 diabetes was induced by the transfer of CD8 T cells specific for the influenza virus hemagglutinin into recipient mice expressing the hemagglutinin Ag specifically in their beta pancreatic cells. In contrast to previous reports, high frequency of iNKT cells promoted severe insulitis and exacerbated diabetes. Analysis of diabetogenic CD8 T cells showed that iNKT cells enhance their activation, their expansion, and their differentiation into effector cells producing IFN-gamma. This first analysis of the influence of iNKT cells on diabetogenic CD8 T cells reveals that iNKT cells not only fail to regulate but in fact exacerbate the development of diabetes. Thus, iNKT cells can induce opposing effects dependent on the model of type 1 diabetes that is being studied. This prodiabetogenic capacity of iNKT cells should be taken into consideration when developing therapeutic approaches based on iNKT cell manipulation.  相似文献   

14.
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.  相似文献   

15.
The rapid and robust immunoregulatory cytokine response of Va14Ja18 natural T (iNKT) cells to glycolipid Ags determines their diverse functions. Unlike conventional T cells, iNKT lymphocyte ontogeny absolutely requires NF-kappa B signaling. However, the precise role of NF-kappa B in iNKT cell function and the identity of upstream signals that activate NF-kappa B in this T cell subset remain unknown. Using mice in which iNKT cell ontogeny has been rescued despite inhibition of NF-kappa B signaling, we demonstrate that iNKT cell function requires NF-kappa B in a lymphocyte-intrinsic manner. Furthermore, the ontogeny of functional iNKT cells requires signaling through protein kinase C theta, which is dispensable for conventional T lymphocyte development. The unique requirement of protein kinase C theta implies that signals emanating from the TCR activate NF-kappa B during iNKT cell development and function. Thus, we conclude that NF-kappa B signaling plays a crucial role at distinct levels of iNKT cell biology.  相似文献   

16.
The CD1 family of antigen-presenting molecules consists of five members, CD1a to e. Of these molecules CD1d has been the subject of much interest over the past 10 years following the discovery that this molecule presents antigens to a group of T cells known as invariant natural killer T cells (iNKT). iNKT cells carry an invariant T cell receptor which contains homologous gene segments in mouse and man. iNKT cells are positively selected in the thymus in the same manner as major histocompatibility complex restricted T cells, except iNKT cells require CD1d to be presented by thymocytes rather than epithelial cells. Once in peripheral organs, iNKT cells appear to play multiple roles in host defence against pathogens and cancer. If the numbers of iNKT cells are not correctly regulated it can result in autoimmune disorders, such as diabetes. The ligands for iNKT cells have been the subject of much research but identifying physiologically relevant candidate ligands for positive selection or activation has proved technically very challenging. This is largely due to the fact that the ligands for iNKT cells are lipids. The lipid ligands for thymic selection and some of those involved in peripheral activation are self-derived. Glycosphingolipids are suggested to be the class of lipid for iNKT cell thymic development. For peripheral activation it appears multiple classes of self-derived lipids may play a role, in addition to pathogen-derived lipids. This review will cover essential background to iNKT cell and CD1d biology with emphasis on the candidate iNKT cell ligands proposed to date.  相似文献   

17.
Invariant NKT cells (iNKT cells) recognize CD1d/glycolipid complexes. We demonstrate that the nonglycosidic compound threitolceramide efficiently activates iNKT cells, resulting in dendritic cell (DC) maturation and the priming of Ag-specific T and B cells. Threitolceramide-pulsed DCs are more resistant to iNKT cell-dependent lysis than alpha-galactosylceramide-pulsed DCs due to the weaker affinity of the human iNKT TCR for CD1d/ threitolceramide than CD1d/alpha-galactosylceramide complexes. iNKT cells stimulated with threitolceramide also recover more quickly from activation-induced anergy. Kinetic and functional experiments showed that shortening or lengthening the threitol moiety by one hydroxymethylene group modulates ligand recognition, as human and murine iNKT cells recognize glycerolceramide and arabinitolceramide differentially. Our data broaden the range of potential iNKT cell agonists. The ability of these compounds to assist the priming of Ag-specific immune responses while minimizing iNKT cell-dependent DC lysis makes them attractive adjuvants for vaccination strategies.  相似文献   

18.
Vitamin D status changes with season, but the effect of these changes on immune function is not clear. In this study, we show that in utero vitamin D deficiency in mice results in a significant reduction in invariant NKT (iNKT) cell numbers that could not be corrected by later intervention with vitamin D or 1,25-dihydroxy vitamin D(3) (active form of the vitamin). Furthermore, this was intrinsic to hematopoietic cells, as vitamin D-deficient bone marrow is specifically defective in generating iNKT cells in wild-type recipients. This vitamin D deficiency-induced reduction in iNKT cells is due to increased apoptosis of early iNKT cell precursors in the thymus. Whereas both the vitamin D receptor and vitamin D regulate iNKT cells, the vitamin D receptor is required for both iNKT cell function and number, and vitamin D (the ligand) only controls the number of iNKT cells. Given the importance of proper iNKT cell function in health and disease, this prenatal requirement for vitamin D suggests that in humans, the amount of vitamin D available in the environment during prenatal development may dictate the number of iNKT cells and potential risk of autoimmunity.  相似文献   

19.
Invariant NKT (iNKT) cells are infrequent but important immunomodulatory lymphocytes that exhibit CD1d-restricted reactivity with glycolipid Ags. iNKT cells express a unique T-cell receptor (TCR) composed of an invariant α-chain, paired with a limited range of β-chains. Superantigens (SAgs) are microbial toxins defined by their ability to activate conventional T cells in a TCR β-chain variable domain (Vβ)-specific manner. However, whether iNKT cells are directly activated by bacterial SAgs remains an open question. Herein, we explored the responsiveness of mouse and human iNKT cells to a panel of staphylococcal and streptococcal SAgs and examined the contribution of major histocompatibility complex (MHC) class II and CD1d to these responses. Bacterial SAgs that target mouse Vβ8, such as staphylococcal enterotoxin B (SEB), were able to activate mouse hybridoma and primary hepatic iNKT cells in the presence of mouse APCs expressing human leukocyte antigen (HLA)-DR4. iNKT cell-mediated cytokine secretion in SEB-challenged HLA-DR4-transgenic mice was CD1d-independent and accompanied by a high interferon-γ:interleukin-4 ratio consistent with an in vivo Th1 bias. Furthermore, iNKT cells from SEB-injected HLA-DR4-transgenic mice, and iNKT cells from SEB-treated human PBMCs, showed early activation by intracellular cytokine staining and CD69 expression. Unlike iNKT cell stimulation by α-galactosylceramide, stimulation by SEB did not induce TCR downregulation of either mouse or human iNKT cells. We conclude that Vβ8-targeting bacterial SAgs can activate iNKT cells by utilizing a novel pathway that requires MHC class II interactions, but not CD1d. Therefore, iNKT cells fulfill important effector functions in response to bacterial SAgs and may provide attractive targets in the management of SAg-induced illnesses.  相似文献   

20.
iNKT cells are required for the induction of airway hyperreactivity (AHR), a cardinal feature of asthma, but how iNKT cells traffic to the lungs to induce AHR has not been previously studied. Using several models of asthma, we demonstrated that iNKT cells required the chemokine receptor CCR4 for pulmonary localization and for the induction of AHR. In both allergen-induced and glycolipid-induced models of AHR, wild-type but not CCR4-/- mice developed AHR. Furthermore, adoptive transfer of wild-type but not CCR4-/- iNKT cells reconstituted AHR in iNKT cell-deficient mice. Moreover, we specifically tracked CCR4-/- vs wild-type iNKT cells in CCR4-/-:wild-type mixed BM chimeric mice in the resting state, and when AHR was induced by protein allergen or glycolipid. Using this unique model, we showed that both iNKT cells and conventional T cells required CCR4 for competitive localization into the bronchoalveolar lavage/airways compartment. These results establish for the first time that the pulmonary localization of iNKT cells critical for the induction of AHR requires CCR4 expression by iNKT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号