首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and activity of small molecule GPR40 agonists   总被引:2,自引:0,他引:2  
The first report on the identification and structure-activity relationships of a novel series of GPR40 agonists based on a 3-(4-{[N-alkyl]amino}phenyl)propanoic acid template is described. Structural modifications to the original screening hit yielded compounds with a 100-fold increase in potency at the human GPR40 receptor and pEC(50)s in the low nanomolar range. The carboxylic acid moiety is not critical for activity but typically elicits an agonistic response higher than those observed with carboxamide replacements. These compounds may prove useful in unraveling the therapeutic potential of this receptor for the treatment of Type 2 diabetes.  相似文献   

2.
A series of 4-(phenoxymethyl)thiazole derivatives was synthesized and evaluated for their GPR119 agonistic effect. Several 4-(phenoxymethyl)thiazoles with pyrrolidine-2,5-dione moieties showed potent GPR119 agonistic activities. Among them, compound 27 and 32d showed good in vitro activity with an EC50 value of 49?nM and 18?nM, respectively with improved human and rat liver microsomal stability compare with MBX-2982. Compound 27 & 32d did not exhibit significant CYP inhibition, hERG binding, and cytotoxicity. Moreover, these compounds lowered the glucose excursion in mice in an oral glucose-tolerance test.  相似文献   

3.
A series of GPR119 agonists based on a 5-nitropyrimidine scaffold bearing endo-azabicyclic substituents were synthesized and evaluated for their GPR119 agonistic activities. Most compounds exhibited much stronger EC50 values than that of oleoylethanolamide (OEA). Among them, derivatives from endo-azabicyclic alcohols displayed more potent GPR119 agonistic activities than compounds with endo-azabicyclic amines. Especially the optimized compounds (6, 7, 8, 12, 17) were shown to have potent biological activities and were identified as full agonists. Isopropyl carbamate compound 8 synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (0.6 nM). Generally 2-fluoro substitution of the aryl group at the C4 position of 5-nitropyrimidine scaffold resulted in the increase of biological activity.  相似文献   

4.
A class of novel pyrimidine derivatives bearing diverse conformationally restricted azabicyclic ether/amine were designed, synthesized and evaluated for their GPR119 agonist activities against type 2 diabetes. Most compounds exhibited superior hEC50 values to endogenous lipid oleoylethanolamide (OEA). Analogs with 2-fluoro substitution in the aryl ring showed more potent GPR119 activation than those without fluorine. Especially compound 27m synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (1.2 nM) and quite good agonistic activity (112.2% max) as a full agonist.  相似文献   

5.
A novel series of fused pyrimidine derivatives were designed, synthesized and evaluated as GPR119 agonists. Among them, cyclohexene fused compounds (tetrahydroquinazolines) showed greater GPR119 agonistic activities than did dihydrocyclopentapyrimidine and tetrahydropyridopyrimidine scaffolds. Analogues (16, 19, 26, 28, 42) bearing endo-N-Boc-nortropane amine and fluoro-substituted aniline exhibited better EC50 values (0.27–1.2 μM) though they appeared to be partial agonists.  相似文献   

6.
We described the discovery and optimization of a novel series of pyrimidopyrimidine derivatives as G-protein coupled receptor 119 (GPR119) agonists against type 2 diabetes. Most designed compounds displayed significant GPR119 agonistic activities. Optimized analogues 15a and 21e exhibited highly potent agonistic activities with single digit EC50 values (2.2?nM and 8.1?nM, respectively). Therefore, 15a and 21e were evaluated for their oral glucose tolerance test (oGTT) in C57BL/6N mice. Compound 15a reduced the blood glucose area of under curve from 0 to 2?h (AUC0–2h) to 13.5% at the dose of 15?mg/kg comparing with Metformin reduced 18% of AUC0–2h at the dose of 300?mg/kg.  相似文献   

7.
G-protein-coupled receptor 52 (GPR52) is classified as an orphan Gs-coupled G-protein-coupled receptor. GPR52 cancels dopamine D2 receptor signaling and activates dopamine D1/N-methyl-d-aspartate receptors via intracellular cAMP accumulation. Therefore, GPR52 agonists are expected to alleviate symptoms of psychotic disorders. A novel series of 1-(benzothiophen-7-yl)-1H-pyrazole as GPR52 agonists was designed and synthesized based on compound 1b. Compound 1b has been reported by our group as the first orally active GPR52 agonist, but high lipophilicity and poor aqueous solubility still remained as issues for candidate selection. To resolve these issues, replacement of the benzene ring at the 7-positon of compound 1b with heterocylic rings, such as pyrazole and pyridine, was greatly expected to reduce lipophilicity to levels for which calculated logD values were lower than that of compound 1b. While evaluating the pyrazole derivatives, introduction of a methyl substituent at the 3-position of the pyrazole ring led to increased GPR52 agonistic activity. Moreover, additional methyl substituent at the 5-position of the pyrazole and further introduction of hydroxy group to lower logD led to significant improvement of solubility while maintaining the activity. As a result, we identified 3-methyl-5-hydroxymethyl-1H-pyrazole derivative 17 (GPR52 EC50?=?21?nM, Emax?=?103%, logD?=?2.21, Solubility at pH 6.8?=?21?μg/mL) with potent GPR52 agonistic activity and good solubility compared to compound 1b. Furthermore, this compound 17 dose-dependently suppressed methamphetamine-induced hyperlocomotion in mice.  相似文献   

8.
A novel series of GPR40 agonists is designed by introducing nitrogen-containing heterocyclic ring at the terminal phenyl ring of TAK-875 with the aim of decreasing its lipophilicity. Three different β-substituted phenylpropionic acids were investigated as the acidic components. A total of 34 compounds have been synthesized, among which, compound 30 exhibited comparable GPR40 agonistic activity in vitro with TAK-875 and relatively lower lipophilicity through calculation (30, EC50?=?1.2?μM, cLogP?=?1.3; TAK-875: EC50?=?5.1?μM, cLogP?=?3.4). Moreover, compound 30 was able to enhance the insulin secretion of primary islets isolated from normal ICR mice and showed no obvious inhibition against cytochromes P450 in vitro. In vivo, compound 30 exhibited efficacy in oral glucose tolerance test (oGTT) in normal ICR mice.  相似文献   

9.
As a continuation of previous research on anticholinergic drugs derived from 2,2-diphenyl-2-ethylthioacetic acid, several 5,5-diphenyl-5-ethylthio-2-pentynamines (2-11) were synthetised and their antimuscarinic activity on M(1-4) receptor subtypes was evaluated by functional tests and binding experiments. One of the compounds obtained showed unexpected agonistic activity in functional experiments on M(2) receptors. Since the compound carried a phenylpiperazine moiety, other similar compounds (12-17) were prepared and found to be endowed with similar behaviour. These ligands, although possessing the bulky structure characterising muscarinic antagonists, display agonistic activity at M(2) subtypes while, as expected, behaving as antagonists on M(3) and M(4) subtypes. On M(1) subtypes, they show agonistic activity which, however, is not blocked by atropine. The peculiar pharmacological profile of these compounds is of interest for studying muscarinic receptor subtypes.  相似文献   

10.
Exploration of alternative structures of the substituted piperidine or piperazine ring which are characteristic in most of the reported GPR119 agonists provided novel spirocyclic cyclohexane derivatives. The representative 17 with a high three-dimensionality exhibited potent agonistic activity (EC50?=?4?nM) with no CYP inhibitory activity (IC50 >10?μM). Compound 17 also displayed hypoglycemic activity with insulin secretion dependent on glucose concentration in an intraperitoneal glucose tolerance test in rats.  相似文献   

11.
GPR119 agonist has emerged as a promising target for the treatment of type 2 diabetes. A series of novel 2,4-disubstituted quinazoline analogues was prepared and evaluated their agonistic activity against human GPR119. The analogues bearing azabicyclic amine substituents (12a, 12c and 12g) exhibited better EC50 values than that of OEA though they appeared to be partial agonists.  相似文献   

12.
We investigated the structure–activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.  相似文献   

13.
Metastin (kisspeptin-54) is an endogenous ligand that modulates gonadotropin-releasing hormone (GnRH) secretion through the interaction with a G protein-coupled receptor (GPCR), GPR54. The short-chain C-terminal decapeptide amide, metastin (45-54) (kisspeptin-10), exerts the identical bioactivities to metastin, such as metastasis suppression of cancer cells and inhibition of trophoblast migration and invasion. In order to understand the structural requirement for GPR54 agonistic activity, structure-activity relationship (SAR) study on pentapeptide-based C-terminal metastin analogues was carried out. As a result, H-Amb-Nal(2)-Gly-Leu-Arg-Trp-NH2 34 was identified as a novel GPR54 agonist that possessed the most potent GPR54 agonistic activity reported so far.  相似文献   

14.
Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities.  相似文献   

15.
Abstract

Diabetes is a major health problem worldwide predisposing to increased mortality and morbidity. The current antidiabetic therapies have serious side effects and thus have emphasis on further need to develop effective medication therapy. Free fatty acid1 receptor (FFA1R) or G-protein-coupled receptor 40 (GPR40) represents an interesting target for developing novel antidiabetic drug. In the current study, the FFA1R agonistic activity of drug-like molecules was screened by employing pharmacophore modeling, docking, and molecular dynamics (MD) simulation. Hierarchical screening of virtual library of drug-like compounds was performed. This combined computational approach of pharmacophore mapping and structure-based approach was used to identify common hits, and the absorption, distribution, metabolism and excretion (ADME) prediction supported the analysis of their pharmacokinetic potential. MD simulation studies of the GPR40 complex with the most promising hit found in this study further validated are approached. The key residues Arg183, Arg258, Tyr91, and Tyr240 of the binding pocket were acknowledged as essential and were found to be associated in the key interactions with the most potential hit. These studies will hopefully provide scope for efficiently designing and screening new compounds as active drug candidates with more selectivity for hGPR40. To the best of our knowledge, this is the first example of the successful application of both ligand and structurebased virtual-screening techniques to discover novel GPR40 agonists.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
GPR119 has emerged as an attractive target for anti-diabetic agents. We identified a structurally novel GPR119 agonist 22c that carries a 5-(methylsulfonyl)indoline motif as an early lead compound. To generate more potent compounds of this series, structural modifications were performed mainly to the central alkylene spacer. Installation of a carbonyl group and a methyl group on this spacer significantly enhanced agonistic activity, resulting in the identification of 2-[1-(5-ethylpyrimidin-2-yl)piperidin-4-yl]propyl 7-fluoro-5-(methylsulfonyl)-2,3-dihydro-1H-indole-1-carboxylate (20). To further expand the chemical series of indoline-based GPR119 agonists, several heterocyclic core systems were introduced as surrogates of the carbamate spacer that mimic the presumed active conformation. This approach successfully produced an indolinylpyrimidine derivative 37, 5-(methylsulfonyl)-1-[6-({1-[3-(propan-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-4-yl}oxy)pyrimidin-4-yl]-2,3-dihydro-1H-indole, which has potent GPR119 agonist activity. In rat oral glucose tolerance tests, these two indoline-based compounds effectively lowered plasma glucose excursion and glucose-dependent insulin secretion after oral administration.  相似文献   

17.
Novel 4-amino-2-phenylpyrimidine derivatives were synthesized and evaluated as GPR119 agonists. Optimization of the substituents on the phenyl ring at the 2-position and the amino group at the 4-position led to the identification of 3,4-dihalogenated and 2,4,5-trihalogenated phenyl derivatives showing potent GPR119 agonistic activity. The advanced analog (2R)-3-{[2-(4-chloro-2,5-difluorophenyl)-6-ethylpyrimidin-4-yl]amino}propane-1,2-diol (24g) was found to improve glucose tolerance at 1mg/kg po in mice and to show excellent pharmacokinetic profiles in mice and monkeys. Compound 24g also showed an excellent antidiabetic effect in diabetic kk/Ay mice after one week of single daily treatment. These results demonstrate that novel GPR119 agonist 24g improves glucose tolerance not only by enhancing glucose-dependent insulin secretion but also by preserving pancreatic β-cell function.  相似文献   

18.
A series of thienopyrimidine derivatives was synthesized and evaluated for their GPR119 agonistic ability. Several thienopyrimidine derivatives containing R1 and R2 substituents displayed potent GPR119 agonistic activity. Among them, compound 5d, which is a prototype, showed good in vitro activity with an EC50 value of 3 nM and human and rat liver microsomal stability. Compound 5d exhibited no CYP inhibition and induction, Herg binding, or mutagenic potential. Compound 5d showed increase insulin secretion in beta TC-6 cell and lowered the glucose excursion in mice in an oral glucose-tolerance test.  相似文献   

19.
A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 β-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).  相似文献   

20.
Neuropeptide B (NPB) has been recently identified as an endogenous ligand for GPR7 (NPBW1) and GPR8 (NPBW2) and has been shown to possess a relatively high selectivity for GPR7. In order to identify useful experimental tools to address physiological roles of GPR7, we synthesized a series of NPB analogs based on modification of an unbrominated form of 23 amino acids with amidated C-terminal, Br(-)NPB-23-NH(2). We confirmed that truncation of the N-terminal Trp residue resulted in almost complete loss of the binding affinity of NPB for GPR7 and GPR8, supporting the special importance of this residue for binding. Br(-)NPB-23-NH2 analogs in which each amino acid in positions 4, 5, 7, 8, 9, 10, 12 and 21 was replaced with alanine or glycine exhibited potent binding affinity comparable to the parent peptide. In contrast, replacement of Tyr(11) with alanine reduced the binding affinity for both GPR7 and GPR8 four fold. Of particular interest, several NPB analogs in which the consecutive amino acids from Pro4 to Val(13) were replaced with several units of 5-aminovaleric acid (Ava) linkers retained their potent affinity for GPR7. Furthermore, these Ava-substituted NPB analogs exhibited potent agonistic activities for GPR7 expressed in HEK293 cells. Among the Ava-substituted NPB analogs, analog 15 (Ava-5) and 17 (Ava-3) exhibited potency comparable to the parent peptide for GPR7 with significantly reduced activity for GPR8, resulting in high selectivity for GPR7. These highly potent and selective NPB analogs may be useful pharmacological tools to investigate the physiological and pharmacological roles of GPR7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号