首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to investigate leaf breakdown in two reaches of different magnitudes, one of a 3rd (closed riparian vegetation) order and the other of a 4th (open riparian vegetation) order, in a tropical stream and to assess the colonization of invertebrates and microorganisms during the processing of detritus. We observed that the detritus in a reach of 4th order decomposed 2.4 times faster than the detritus in a reach of 3rd order, in which, we observed that nitrate concentration and water velocity were greater. This study showed that the chemical composition of detritus does not appear to be important in evaluating leaf breakdown. However, it was shown to be important to biological colonization. The invertebrate community appeared not to have been structured by the decomposition process, but instead by the degradative ecological succession process. With regards to biological colonization, we observed that the density of bacteria in the initial stages was more important while fungi appeared more in the intermediate and final stages. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
Bacteria and fungi provide critical links between leaf detritus and higher trophic levels in forested headwater food webs, but these links in tropical streams are not well understood. We compared the roles of bacteria and fungi in the leaf decomposition process and determining feeding preference for two species of freshwater shrimp found in the Luquillo Experimental Forest, Puerto Rico, using experimental microcosms. We first tested the effects of four treatments on decomposition rates for leaves from two common riparian species, Cecropia scheberiana (Moraceae) and Dacryodes excelsa (Burseraceae), in laboratory microcosms. Treatments were designed to alter the microbial community by minimizing the presence of bacteria or fungi. The fastest decay rate was the control treatment for D. excelsa where both bacteria and fungi were present (k = −0.0073 day−1) compared to the next fastest rate of k = −0.0063 day−1 for the bacterial-conditioned D. excelsa leaves. The fastest decay rate for C. scheberiana was also the control treatment (k = −0.0035 day−1), while the next fastest rate was for fungal-conditioned leaves (k = −0.0029 day−1). The nonadditive effect for leaf decomposition rates observed in the control treatments where both fungi and bacteria were present indicate that bacteria and fungi perform different functions in processing leaf litter. Additionally, leaf types differed in microbial colonization patterns. We next tested feeding preference for leaf type and microbe treatment in microcosms using two species of freshwater shrimp: Xiphocaris elongata, a shredder, and Atya lanipes, a scraper/filterer. To estimate feeding preferences of individual shrimp, we measured change in leaf surface area and the amount of particles generated during 5-day trials in 16 different two-choice combinations. X. elongata preferred D. excelsa over C. scheberiana, and leaves with microbial conditioning over leaves without conditioning. There was no clear preference for fungal-conditioned leaves over bacterial-conditioned leaves. This lack of preference for which microbes were responsible for the conditioning demonstrates the importance of both bacterial and fungal resources in these tropical stream food web studies.  相似文献   

4.
A field study was conducted in a nutrient-impacted marsh in Water Conservation Area 2A (WCA-2A) of the Everglades in southern Florida, USA, to evaluate early stages of plant litter (detritus) decomposition along a well-documented trophic gradient, and to determine the relative importance of environmental factors and substrate composition in governing decomposition rate. Vertically stratified decomposition chambers containing native plant litter (cattail and sawgrass leaves) were placed in the soil and water column along a 10-km transect coinciding with a gradient of soil phosphorus (P) enrichment. Decomposition rate varied significantly along the vertical water–soil profile, with rates typically higher in the water column and litter layer than below the soil surface, presumably in response to vertical gradients of such environmental factors as O2 and nutrient availability. An overall decrease in decomposition rate occurred along the soil P gradient (from high- to low-impact). First-order rate constant (k) values for decomposition ranged from 1.0 to 9.2 × 10−3 day−1 (mean = 2.8 ×10−3 day−1) for cattails, and from 6.7 × 10−4 to 3.0 ×  10−3 day−1 (mean = 1.7 ×  10−3 day−1) for sawgrass. Substantial N and P immobilization occurred within the litter layer, being most pronounced at nutrient-impacted sites. Nutrient content of the decomposing plant tissue was more strongly correlated to decomposition rate than was the nutrient content of the surrounding soil and water. Our experimental results suggest that, although decomposition rate was significantly affected by initial substrate composition, the external supply or availability of nutrients probably played a greater role in controlling decomposition rate. It was also evident that nutrient availability for litter decomposition was not accurately reflected by ambient nutrient concentration, e.g., water and soil porewater nutrient concentration.  相似文献   

5.
1. We examined the export of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested headwaters to aquatic habitats downstream in the coastal mountains of southeast Alaska, U.S.A. Fifty‐two small streams (mean discharge range: 1.2–3.6 L s?1), representing a geographic range throughout southeast Alaska, were sampled with 250‐μm nets either seasonally (April, July, September) or every 2 weeks throughout the year. Samples were used to assess the potential subsidy of energy from fishless headwaters to downstream systems containing fish. 2. Invertebrates of aquatic and terrestrial origin were both captured, with aquatic taxa making up 65–92% of the total. Baetidae, Chironomidae and Ostracoda were most numerous of the aquatic taxa (34, 16 and 8%, respectively), although Coleoptera (mostly Amphizoidae) contributed the greatest biomass (30%). Mites (Acarina) were the most numerous terrestrial taxon, while terrestrial Coleoptera accounted for most of the terrestrial invertebrate biomass. 3. Invertebrates and detritus were exported from headwaters throughout the year, averaging 163 mg invertebrate dry mass stream?1 day?1 and 10.4 g detritus stream?1 day?1, respectively. The amount of export was highly variable among streams and seasons (5–6000 individuals stream?1 day?1 and <1–22 individuals m?3 water; <1–286 g detritus stream?1 day?1 and <0.1–1.7 g detritus m?3 water). Delivery of invertebrates from headwaters to habitats with fish was estimated at 0.44 g dry mass m?2 year?1. We estimate that every kilometre of salmonid‐bearing stream could receive enough energy (prey and detritus) from fishless headwaters to support 100–2000 young‐of‐the‐year (YOY) salmonids. These results illustrate that headwaters are source areas of aquatic and terrestrial invertebrates and detritus, linking upland ecosystems with habitats lower in the catchment.  相似文献   

6.
The objective of this study was to evaluate the influences of detritus from the leaves of different species, and of exposure time on invertebrate colonization of leaves in a shaded Cerrado stream. We hypothesized that the exposure time is the main factor that influences the colonization of leaves by invertebrates. We used leaves of five tree species native to the Brazilian Cerrado: Protium heptaphyllum and Protium brasiliense (Burseraceae), Ocotea sp. (Lauraceae), Myrcia guyanensis (Myrtaceae), and Miconia chartacea (Melastomataceae), which are characterized by their toughness and low-nutritional quality. Litter bags, each containing leaves from one species, were placed in a headwater stream and removed after 7, 15, 30, 60, 90, and 120 days. The dominant taxon was Chironomidae, which comprised ca. 52% of all organisms and ca. 20% of the total biomass. The taxonomic richness of colonizing organisms did not vary among the leaf species. However, the density and biomass of the associated organisms varied differently among the kinds of detritus during the course of the incubation. The collector-gatherers and shredders reached higher densities in the detritus that decomposed more rapidly (Ocotea sp. and M. guyanensis), principally in the more advanced stages of colonization. The collector-filterers reached higher densities in the detritus that decomposed more slowly (P. heptaphyllum, P. brasiliense, and M. chartacea), principally in the initial stages of incubation. A cluster analysis divided the detritus samples of different leaf species according to the exposure time (initial phase: up to 7 days; intermediate phase: 7–30 days; advanced phase: 30–120 days), suggesting some succession in invertebrate colonization, with differences in taxon composition (indicator taxa analysis). These results suggest that regardless of the leaf-detritus species, exposure time was the main factor that influenced the colonization process of aquatic invertebrates.  相似文献   

7.
Invertebrate colonization during leaf litter decomposition was studied at the 2nd order of Yanase River, Iruma city, Saitama, Japan from November 13, 2002 to May 20, 2003. Two different mesh sizes (1 and 5 mm) of litter-bags were used to evaluate the decomposition of leaf litter of Sakura (Prunus lannesiana), bags were placed equally in riffle (water flow velocity: 0.2–0.6 m s−1) and pool (water flow velocity: 0.04–0.06 m s−1). Mass loss and invertebrates in the litter-bags were monitored at interval between 1 and 3 weeks, and the invertebrates were classified based on their functional feeding group. Among the invertebrates found inside the litter-bags, the case-bearing shredder Lepidostomatidae was the most dominant invertebrates and they were the early colonizer that appeared about 3 months after the litter-bags immersion. In absence or low number of leaf-shredders, the decomposition rates in 1 and 5 mm litter mesh bags followed the exponential (or first-order) decay kinetic (R 2: 0.72–0.92). However, the presence of a large number of leaf-shredders in 1 mm litter-bags caused an acceleration of decomposition process; that even resulted faster mass loss than the loss from the 5 mm mesh bags placed in riffle area (0.030 day−1 vs. 0.011 day−1). Our results shows the importance of using different mesh sizes of litter-bags in decomposition study, which is applicable to the experiment in lotic or lentic ecosystem. Using smaller mesh size of litter-bags can provide information on how significant the effect of detritus feeders on the decomposition process, while the bigger mesh size can represent better the natural decomposition process when a large number detritus feeders is present in the smaller mesh size of litter-bags.  相似文献   

8.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.5...  相似文献   

9.
Coastal lagoons are usually subjected to several kinds of human impacts, especially eutrophication. The breaching of the sand bar, which separates the lagoon from the ocean, by human action, is a common process used to decrease the negative effects of eutrophication. The aims of this research were to evaluate the effects of the artificial sand bar breaching on the populations of the aquatic macrophyte Typha domingensis and the subsequent effects on nutrients concentration in a tropical coastal lagoon. Samplings were carried out monthly from February/01 to January/02 in a monospecific stand of T. domingensis at Imboassica lagoon (Rio de Janeiro/Brazil). Two sampling sites, in the middle and in the border of the stand, were marked in three different transects. Water depth was measured and the aerial biomass sampled with a 0.25 m2 quadrat. The macrophyte samples were separated into live and dead material and the shoot length, shoot density and number of leaves were analyzed. All plant material was oven dried till constant weight and net primary production, dead stand crop production and the nutrients release through decomposition were estimated at each site. The decrease in water level due to sand bar opening affected negatively T. domingensis populations, but the most intense effects were observed in the middle of the stand. The shoot mortality was highly enhanced after the sand bar breaching and the nutrients were released through decomposition to the water column. It reflected on an input of 11.5 kg C m−2, 0.22 kg N m−2 and 0.13 kg P m−2 into the lagoon, which represent from 22.5 to 44.8 ton P and 35.9 to 71.8 ton N to the lagoon. The decrease of nutrients concentration after the sand bar breaching was not successfully accomplished. The decay of T. domingensis stands due to the sand bar breaching neutralized the exportation of nutrients to the ocean, and contributed to the phosphorous increase in the water column. Thus, to a better management of aquatic ecosystems subjected to human eutrophication, the role of aquatic macrophytes decomposition on internal fertilization of aquatic ecosystems should be accounted.  相似文献   

10.
Despite frequent disturbances from flow, stream meiofauna form diverse and abundant assemblages suggesting that they are resistant and/or resilient to flow disturbances. Stream flow profoundly influences benthic invertebrate communities but these effects remain poorly understood. We examined the influence of flow on meiofauna colonization at small spatial scales (2–3 m) using artificial streams in conjunction with similar sites (flow, depth, substrates) in the reference stream (Illinois River, Arkansas). Colonization of meiofauna was found to be rapid and generally increased with flow rates examined (1–2, 6–7, and 11–12 cm s−1). Six of the 10 most abundant taxa successfully completed colonization in artificial channels (equaled or exceeded reference benthic densities) within 5 days. Benthic meiofauna were more abundant in fast flows in artificial channels and in fast and slow flows in reference stream sites. A diverse assemblage of meiofauna was collected from the plankton which was dominated by rotifers, copepods (mostly nauplii), dipterans, and cladocerans. Densities of drifting meiofauna (potential colonists of the benthos) were low (5 no. l−1) and similar among artificial channels and reference sites regardless of flow rates (F 1,18 = 2.19, p = 0.1407). Although densities were low, the numbers of drifting meiofauna were more than sufficient to colonize the benthos. Less than 0.65% of the drifting meiofauna were needed to colonize the substrates of artificial streams. The benthic assemblage paralleled that of the plankton, consisting mainly of rotifers, copepods (mainly nauplii), and dipterans. Evidence for active control over dispersal was observed as meiofauna densities varied between the plankton and benthos over the diel cycle (F 1,18 = 6.02, p = 0.0001 and F 1,18 = 9.88, p = 0.006, respectively). Rotifers, copepods, and nematodes were more abundant in the plankton during the day and in the substrates at night. These results suggest that meiofauna assemblages can change rapidly in response to alterations of habitat patches by disturbance.  相似文献   

11.
12.
13.
Ingestion rates of zoeae of Aratus pisonii Milne Edwards (Brachyura: Grapsidae) were determined offering natural plankton-detritus mixtures in laboratory food selection experiments. The food mixtures were sampled in the Itamaracá estuary, north-eastern Brazil, and standardised to a size range of 50–200 μm. Zoeae ingested significant amounts of large centric diatoms (Coscinodiscus spp.), mangrove detritus, tintinnids (Favella ehrenbergi) and adult copepods during feeding experiments. Diatoms were positively selected by A. pisonii zoeae in all three experiments, with ingestion rates of 3.3–21.3 cells zoea−1 day−1. Detritus particles were always more abundant than phytoplankton and zooplankton in the particle size spectrum offered. Detritus was ingested in two of three experiments, with ingestion rates of up to 34.1 particles zoea−1 day−1, being the most important food item during one experiment. Adult copepods (up to 1.8 ind. zoea−1 day−1) and tintinnids (up to 0.4 ind. zoea−1 day−1) were ingested by A. pisonii zoeae during one experiment each. In spite of a wide range of zoeal density, food particle composition, and density, zoeae of A. pisonii displayed a consistent pattern of food selectivity. This hints at a consistent sensory and behavioural mechanism related to capture and handling of food particles, that most likely also affects larval feeding under natural conditions. Although detritus showed to be quantitatively ingested under estuarine conditions, zoeae of A. pisonii preferred large diatoms and ingested zooplankton only occasionally.  相似文献   

14.
Outdoor open thin-layer microalgal photobioreactor: potential productivity   总被引:1,自引:0,他引:1  
We have previously estimated the productivity and photosynthetic efficiency of the microalga Chlorella sp. grown in an outdoor open thin-layer photobioreactor under climate conditions typical of the Middle European region, i.e. with many days unsuitable for intensive growth of algae (cloudy and rainy days, low air temperature, low solar PAR input).To estimate the real potential productivity of the bioreactor, we collected data on algae yields obtained during clear summer day periods. Cultivation was performed in fed-batch cycles in a bioreactor with a 224 m2 culture area (length 28 m, slope 1.7%), and a 6–7 mm-thick layer of algal culture. The suspension volume in the bioreactor was 2,000 L. The mean values found for Třeboň (49°N), Czech Republic, as an average of several sunny summer cultivation periods in July, were: net areal productivity, P net = 38.2 g dry weight (DW) m-2 day-1; net volumetric productivity, Pvol, = 4.3 g algal DW L-1 day-1, photosynthetic efficiency (based on PAR), ηnet = 7.05%. The peak values were: P net about 50 g (DW) m-2 day-1, ηnet about 9%. Algal growth rate was practically linear up to high biomass densities (40–50 g DW L-1, corresponding to an areal density of 240–300 g DW m-2), at which point the culture was harvested. The concentration of dissolved oxygen increased from about 10 mg L-1 at the beginning to about 23 mg L-1 at the end of culture area at noon. Use of the above-described technology for economical production of bioethanol is proposed.  相似文献   

15.
We examined the nutritional quality of decaying leaf litter in a third-order forested stream, using measurements of fatty acid (FA) composition over time. We measured changes in concentrations of total, polyunsaturated, microalgal, and microbial marker FAs in mixed-species leaf packs in spring and autumn and effects of including/excluding macroinvertebrates. Initial concentrations of total FAs in litter were significantly less in spring (5.2 mg/g) than in autumn (6.9 mg/g; F = 6.3; P = 0.03), but total FA concentrations in litter placed in the stream declined significantly over 120 days in both spring (62%; F = 10.9; P < 0.001) and autumn (56%; F = 19.4; P = 0.0001). Quantities of most FAs declined at a greater rate than that of bulk leaf matter. The presence or absence of macroinvertebrates (5 mm vs. 250 μm mesh) had no effect on FA concentration or composition of decomposing litter. Omega-3 polyunsaturated FAs were either nearly absent (20:5ω3) or depleted preferentially over other FAs (18:3ω3). During decomposition the polyunsaturated FA linoleic acid (18:2ω6, common in fungi), declined in concentration more rapidly than other FAs in the spring, but in autumn declined at slower rates, perhaps suggesting greater fungal activity in autumn. Quantities of bacterial (e.g., 16:1ω7) and fungal (e.g., 18:1ω9) FA markers increased over time in autumn (and 16:1ω7 also in spring). Our data provide no evidence for increasing nutritional FA quality of litter during decay and microbial colonization, based on total and polyunsaturated FAs, despite measured increases in bacterial and fungal FA over time. Routine measurements of FA composition of litter could provide insights into the nutrition of allochthonous matter and the importance of fungi and bacteria during decomposition.  相似文献   

16.
Age and growth of early-life-stage Atlantic tarpon Megalops atlanticus collected from Mississippi coastal waters in the northcentral Gulf of Mexico (GOM) are described using otolith microstructure analysis. Tarpon leptocephali (n = 95, 16.0—27.8 mm standard length, LS) collected from June throughOctober 2013—2018, ranged in age from 22 to 43 days (mean = 30.9 ± 0.5 days). Leptocephalus somatic growth rates ranged 0.46—1.24 mm day−1 (mean = 0.76 ± 0.02 mm day−1), and leptocephalus otolith growth rates ranged 1.78—3.97 μm day−1 (mean = 2.58 ± 0.04 μm day−1). Growth rates were inversely correlated to leptocephalus age, indicating the shrinkage phase associated with leptocephalus metamorphosis. Juvenile tarpon (n = 358, 50—359 mm fork length, LF) were collected from August through December 2007—2018. Juveniles exhibited a positive allometric relationship (adjusted R2 = 0.99, P < 0.001) between length and mass. The age of 100 juveniles (71—277 mm LF) ranged from 76 to 174 days. Juvenile growth rate was estimated as 1.56 ± 0.11 mm day−1. Significant (P < 0.001) linear relationships were found between juvenile age and otolith metrics, including otolith mass (R2 = 0.81) and radius (R2 = 0.68). Evaluation of the backcalculated hatch dates suggests that specimens in the collection hatched from late May through mid-September with slight peaks during July and August. A Rao's Spacing Test of Uniformity indicates the presence of significant lunar periodicity in leptocephalus hatch dates (n = 95, U = 250.1, P < 0.05), with 50% of the leptocephali hatched within 5 days (before or after) of the full moon. This study fills critical gaps in the scientific knowledge of tarpon and provides estimates of early-life-history metrics for an iconic game fish at the northernmost extent of its GOM range.  相似文献   

17.
The tetrasporophyte of Asparagopsis armata has been previously established as a novel seaweed biofilter for integrated land-based mariculture. The species growth and biofiltration rates were much higher than the values described in the literature for Ulva spp., the most common seaweed biofilter. However, a validation of the advantage of one species over the other requires a study of the performances of these two species in the same system at the same time. In this work, we compared the biofiltration performance and biomass yield of A. armata and Ulva rigida cultivated in the effluents of a fish farm in southern Portugal. Comparisons were performed at different water renewal rates and in two seasons of the year. The maximum total ammonia nitrogen (TAN) removal rates were similar for both species in December (2.7 and 2.8 g TAN m–2 day–1 for U. rigida and A. armata, respectively) and higher for A. armata (6.5 g TAN m–2 day–1) than for U. rigida (5.1 g TAN m–2 day–1) in May. Higher differences were observed when estimating the nitrogen biofiltration through the organic nitrogen yield (N yield) of the biomass produced, particularly in May. This estimate is directly related with the biomass yield and the N content in the tissue which were always higher for A. armata than for U. rigida. In December, the maximum biomass yields were 71 g dry weight (DW) m–2 day–1 for A. armata and 44 g DW m–2 day–1 for U. rigida, while in May, the yield of A. armata was 125 g DW m–2 day–1 and of U. rigida was 73 g DW m–2 day–1. This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida. To the best of our knowledge, the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.  相似文献   

18.
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P=0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L–1 of each leachate. Nitrification rates ranged from below detection to 0.49 μg N mL sediment–1 day–1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r=–0.594, P=0.0093) and specific ultraviolet absorbance (r=0.469, P=0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L–1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out‐competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.  相似文献   

19.
1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

20.
The value of ecosystems functions performed by forests in the climate change era has prompted increasing attention towards assessment of carbon stocks and fluxes in tropical forests. The aim of this study was to understand how forest management approaches and environmental controls impacted on soil CO2 efflux in a tropical Eastern Mau forest which is one of the blocks of the greater Mau complex in Kenya. Nested experimental design approach was employed where 32 plots were nested into four blocks (disturbed natural, undisturbed natural, plantation and glades). In 10 m2 plots, data were collected on soil CO2 efflux, soil temperature and soil moisture using soda lime methods, direct measurement and proxy techniques, respectively. There was significant forest management type effect (F3,127 = 3.01, p = 0.033) and seasonality effect (t test = 3.31, df = 1, p < 0.05) on mean soil CO2 efflux. The recorded mean soil CO2 efflux levels were as follows: plantation forest (9.219 ± 3.067 g C M?2 day?1), undisturbed natural forest (8.665 ± 4.818 g C M?2 day?1), glades (8.592 ± 3.253 g C M?2 day?1) and disturbed natural forest (7.198 ± 3.457 g C M?2 day?1). The study concludes that managing a forest in plantation form is primarily responsible for forest soil CO2 efflux levels due to aspects such as increased microbial activity and root respiration. However, further studies are required to understand the role and impact of soil CO2 efflux on the greater forest carbon budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号