首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Swedish sand lizard (Lacerta agilis) is a relict species from the period of warmth following the last glacial episode and has a fragmented distribution in central Sweden and a more continuous distribution in the southern part of the country. We used this model system of colonization–extinction for a study of genetic variability within and among Swedish populations from different parts of the distribution range using multilocus DNA fingerprinting. The results from the Swedish populations are then contrasted with those from a large Hungarian population in the centre of the species geographical distribution range, which is likely to closely resemble the ancestral founding population of Sweden. Swedish populations have a low level of genetic variability compared with the Hungarian reference population, which showed a genetic variability within the range described for outbred populations. Within the Swedish populations, the average bandsharing was 0.61, the mean heterozygosity 0.45 and the estimated number of alleles 2.7. The figures for the Hungarian population were a bandsharing of 0.19, a heterozygosity of 0.89 and an estimated number of alleles of 9.8. A population bottleneck, common to all Swedish sand lizards, is indicated by less than 20% of the alleles in the Hungarian population being retained in the Swedish populations, and higher bandsharing similarity between different Swedish populations (0.33) as opposed to the Hungarian population (0.19). The limited variability found in Swedish sand lizards is strongly subdivided between populations, with an average FST of 0.32, indicating a very limited gene flow between the isolated populations, as well as between populations in the region where the sand lizard has a more or less continuous distribution (FST = 0.41).  相似文献   

2.
We developed microsatellite markers for the sand lizard (Lacerta agilis) to enable investigations of the genetic variability within and among populations with a heterogeneous spatial distribution in Sweden. The populations, which could not be characterized by variation in allozymes or mitochondrial DNA, had a substantial level of variability in microsatellite loci. However, the variability in Swedish populations was limited compared to a large, outbred Hungarian population. In the sand lizard, the number of (GT/CA) n repeats was approximately three times higher than that for (CT/GA) n. The number of repeats and the frequency of microsatellites were within the range reported for other species. Three of nine microsatellite loci showed alleles that could not be amplified, which is in agreement with recent reports describing microsatellite “null alleles” as a common occurrence. We discuss the caution which this calls for when calculating paternity probabilities and when estimating between-population allelic differentiation. A potential problem with different mutation rates for alleles within the same locus is discussed.  相似文献   

3.
Populations of sand lizards (Lacerta agilis) are declining throughout its north-western range. Here we characterize fifteen new microsatellite markers developed specifically for parentage analysis in a small Swedish population of sand lizards. These loci were screened in the Asketunnan population and a much larger and genetically diverse Hungarian population, with heterozygosities ranging from (0.217–0.875) and (0.400–0.974), respectively. All loci were in Hardy-Weinberg Equilibrium in the Swedish population but eight loci had significant heterozygote deficiencies in the Hungarian population. Two loci were significantly linked in both populations. These microsatellite loci are likely to be applicable in research on other sand lizard populations throughout Europe.  相似文献   

4.
Populations of sand lizards (Lacerta agilis) are declining throughout its north-western range. Here we characterize fifteen new microsatellite markers developed specifically for parentage analysis in a small Swedish population of sand lizards. These loci were screened in the Asketunnan population and a much larger and genetically diverse Hungarian population, with heterozygosities ranging from (0.217–0.875) and (0.400–0.974), respectively. All loci were in Hardy-Weinberg Equilibrium in the Swedish population but eight loci had significant heterozygote deficiencies in the Hungarian population. Two loci were significantly linked in both populations. These microsatellite loci are likely to be applicable in research on other sand lizard populations throughout Europe. An erratum to this article can be found at  相似文献   

5.
Loss of genetic variation from genetic drift during population bottlenecks has been shown for many species. Red deer (Cervus elaphus) may have been exposed to bottlenecks due to founder events during postglacial colonisation in the early Holocene and during known population reductions in the eighteenth and nineteenth centuries. In this study, we assess loss of genetic variation in Scandinavian red deer due to potential bottlenecks by comparing microsatellite (n = 14) and mitochondrial DNA variation in the Norwegian and Swedish populations with the Scottish, Lithuanian and Hungarian populations. Bottlenecks are also assessed from the M ratio of populations, heterozygosity excess and from hierarchical Bayesian analyses of their demographic history. Strong genetic drift and differentiation was identified in both Scandinavian populations. Microsatellite variation was lower in both Scandinavian populations compared with the other European populations and mitochondrial DNA variation was especially low in the Swedish population where only one unique haplotype was observed. Loss of microsatellite alleles was demonstrated by low M ratios in all populations except the Hungarian. M ratios’ were especially low in the Scandinavian populations, indicating additional or more severe bottlenecks. Heterozygosity excess compared with the expectation from the number of observed microsatellite alleles suggested a recent bottleneck of low severity in the Norwegian population. Hierarchical Bayesian coalescent analyses consistently yielded estimates of a large ancestral and a small current population size in all investigated European populations and suggested the onset of population decline to be between 5,000 and 10,000 years ago, which coincide well with postglacial colonisation.  相似文献   

6.
Pakistan is rich in sheep genetic resources. Balkhi, Hashtnagri, and Michni are neighboring sheep populations found in Khyber Pakhtunkhwa province of Pakistan. In this study, we analyzed the genetic structures and bottleneck incidents within these sheep populations using 31 microsatellite DNA markers. Total numbers of 116, 100, and 95 alleles, with average numbers of 3.20, 3.26, and 3.74 alleles per locus were observed, respectively, in Balkhi, Hashtnagri, and Michni population. Mean observed heterozygosity was 0.402 in Balkhi, 0.416 in Hashtnagri, and 0.522 in Michni population. All the three sheep populations showed significantly high inbreeding. Michni population was found to be in mutation drift equilibrium, showing the absence of genetic bottleneck. The data of Balkhi and Hashtnagri indicated the presence of genetic bottleneck in these populations. These results suggest a moderate level of genetic diversity within Michni population that may be useful for breed improvement programs. Hashtnagri and Balkhi populations having low within breed genetic variability may contain some valuable characteristics that need to be conserved.  相似文献   

7.
Vardo AM  Schall JJ 《Molecular ecology》2007,16(13):2712-2720
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or during periods/locations when transmission intensity is low.  相似文献   

8.
We review postcopulatory phenomena in the Swedish sand lizard (Lacerta agilis) and adder (Vipera berus), and in particular, links between female promiscuity, determinants of paternity, and offspring viability. In both species, females mate multiply and exhibit a positive relationship between the number of partners and offspring viability. We conclude that this relationship is most likely the result of variable genetic compatibility between mates arising from postcopulatory phenomena, predominantly assortative fertilization with respect to parental genotypes. However, males who were more successful at mate acquisition were also more successful in situations of sperm competition, suggesting a possible link between male (diploid and haploid) genetic quality per se and probability of fertilization. Neither the number of partners nor the number of matings influenced the risk of infertility in sand lizards, suggesting that selection for reduced risk of infertility is not a sufficient explanation for maintaining female promiscuity in this population. Finally, we conclude that the relatively low genetic variability exhibited by our study populations may have facilitated detection of genetic benefits compared to more outbred ones. However, recent work derived from outbred populations in other taxa suggest a greater generality of the principles we discuss than previously may have been appreciated.  相似文献   

9.
A model is presented in which a large population in mutation/drift equilibrium undergoes a severe restriction in size and subsequently remains at the small size. The rate of loss of genetic variability has been studied. Allelic loss occurs more rapidly than loss of genic heterozygosity. Rare alleles are lost especially rapidly. The result is a transient deficiency in the total number of alleles observed in samples taken from the reduced population when compared with the number expected in a sample from a steady-state population having the same observed heterozygosity. Alternatively, the population can be considered to possess excess gene diversity if the number of alleles is used as the statistical estimator of mutation rate. The deficit in allele number arises principally from a lack of those alleles that are expected to appear only once or twice in the sample. The magnitude of the allelic deficiency is less, however, than the excess that an earlier study predicted to follow a rapid population expansion. This suggests that populations that have undergone a single bottleneck event, followed by rapid population growth, should have an apparent excess number of alleles, given the observed level of genic heterozygosity and provided that the bottleneck has not occurred very recently. Conversely, such populations will be deficient for observed heterozygosity if allele number is used as the sufficient statistic for the estimation of 4Nev. Populations that have undergone very recent restrictions in size should show the opposite tendencies.  相似文献   

10.
The Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense, has experienced both a severe population crash associated with an increase in alien ungulate populations on Mauna Kea, and a population bottleneck associated with reintroduction. In this paper, we address the genetic consequences of both demographic events using eight microsatellite loci. The population crash was not accompanied by a significant reduction in number of alleles or heterozygosity. However, the population bottleneck was accompanied by significant reductions in observed number of alleles, effective number of alleles, and expected heterozygosity, though not in observed heterozygosity. The effective size of the population bottleneck was calculated using both observed heterozygosities and allele frequency variances. Both methods corroborated the historical census size of the population bottleneck of at most three individuals. The results suggest that: (i) small populations, even those that result from severe reductions in historical population size and extent, are not necessarily genetically depauperate; and (ii) species reintroduction plans need to be conceived and implemented carefully, with due consideration to the genetic impact of sampling for reintroduction.  相似文献   

11.
Information on genetic variation is essential for conservation and stock improvement programs. Seven dinucleotide microsatellite loci were analyzed to reveal genetic variability in three wild populations (Kella beel, Hakaluki haor, and Shobornokhali beel) and one hatchery population of the freshwater walking catfish, Clarias batrachus, in Bangladesh. Upon PCR amplification, the alleles were separated on polyacrylamide gel using a sequencing gel electrophoresis system and visualized by the silver-staining method. The loci were polymorphic (P95) in all the populations. Differences were observed in number and frequency of alleles as well as heterozygosity in the studied populations. Current gene diversity (He) was higher than expected under mutation-drift equilibrium, significantly in the Hakaluki haor and Shobornokhali beel populations, indicating a recent genetic bottleneck. Population differentiation (FST) values were significant (P<0.05) in all the population pairs. A relatively high level of gene flow and a low level of FST values were found between wild population pairs compared to hatchery-wild pairs. The unweighted pair group method with averages dendrogram based on genetic distance resulted in two major clusters: the hatchery population was alone in one cluster whereas the three wild populations made another cluster. The results reflect some degree of genetic variability in C. batrachus populations indicating potentialities for improving this species through a selective breeding program. The results revealed a recent bottleneck in some wild populations of C. batrachus. Protection of habitat may help increase the population size and lower the risk of vulnerability of the species in the future.  相似文献   

12.
The northern pike (Esox lucius L.), an important predatory freshwater species, is undergoing significant population decline. In this study, 18 novel polymorphic microsatellite loci were isolated and used for assessing genetic variation in the Chinese Ulungur and Hungarian Balaton populations of the species. The number of alleles ranged from 2 to 13, observed heterozygosity from 0.154 to 0.920 and expected heterozygosity from 0.145 to 0.921, thereby indicating the specific usefulness of these suites of markers for investigating genetic variability.  相似文献   

13.
The Eastern Barred Bandicoot Perameles gunnii has declined in abundance within mainland south-eastern Australia, to a relict wild population of less than 100 individuals in Hamilton, Victoria. It is more common, but is also declining in Tasmania. Genomic DN A variability was compared within and between surviving populations of P. gunnii using variable number of tandem repeat (VNTR) markers in one of two ways. First, average percentage differences (APDs) were determined between profiles for two VNTR probe—endonuclease combinations. Secondly, because one of these combinations revealed two multiallelic VNTR loci, genotypes were assigned and analysed for homogeneity of allele frequencies among subpopulations, for deviation of heterozygosity from Hardy-Weinberg equilibrium within populations and for genetic structuring among individuals from different subpopulations. The results of both the APD and defined locus approaches showed consistent trends within and between populations. Genetic variability was higher among mainland P. gunnii than in Tasmanian populations (higher APDs, number of alleles, and heterozygosity at one locus), despite the known decline and subdivision of the Hamilton population. Eleven per cent of the variability detected in Hamilton was attributed to genetic differentiation between east and west subdivisions of the population. Departure from random mating indicating local inbreeding within collecting localities was evident for one locus in both north and south Tasmania, particularly at one locality. AH alleles at both loci were unique to either Hamilton or Tasmanian P. gunnii. The initial captive colony contains high heterozygosity for these loci. It is concluded that VNTR markers can be of benefit for use in studies of population differentiation and for conservation management.  相似文献   

14.
The golden mussel, Limnoperna fortunei a highly invasive species in Brazil, has generated productive, economical, and biological impacts. To evaluate genetic structure and variability of L. fortunei populations present in fish farms in the reservoirs of Canoas I (CANFF), Rosana (ROSFF), and Capivara (CAPFF) (Paranapanema River, Paraná, Brazil), eight microsatellite loci were amplified. Five of those eight loci resulted in 38 alleles. The observed heterozygosity (Ho) was lower than the expected heterozygosity (He) in all populations, with a deviation from the Hardy–Weinberg equilibrium (HWE). The average value for the inbreeding coefficient (Fis) was positive and significative for all populations. There was higher genetic variability within populations than among them. The fixation index (Fst) showed a small genetic variability among these populations. The occurrence of gene flow was identified in all populations, along with the lack of a recent bottleneck effect. The clustering analysis yielded K = 2, with genetic similarity between the three populations. The results demonstrate low genetic structure and suggest a founding population with greater genetic variability (ROSFF). Our data point to the possible dispersal of L. fortunei aided by anthropic factors in the upstream direction. It was concluded that the three populations presented a unique genetic pool for Paranapanema River, with occurrence of gene flow.  相似文献   

15.
The present study estimates genetic variability with a set of 25 microsatellite markers in a random sample of 50 animals of Tharparkar breed of Indian zebu (Bos indicus) cattle. Tharparkar is a dual-purpose breed, valued for its milk as well as draught utility, and is adapted to the inhospitable Thar desert conditions of Rajasthan typified by summer temperature hovering above 50 degrees C, sparse rainfall and vegetation, and scarcity of even drinking water. The observed number of alleles ranged from 4 (ETH3, ILSTS030, INRA5, INRA63 and MM8) to 11 (HEL9 and ILSTS034), with allelic diversity (average number of observed alleles per locus) of 6.20. Observed and expected heterozygosity ranged from 0.25 (INRA63) to 0.77 (ETH10), and from 0.51 (HEL5 and HAUT27) to 0.88 (HEL9) respectively. Wide range of genetic variability supported the utility of these microsatellite loci in measurement of genetic diversity indices in other Indian cattle breeds too. Various average genetic variability measures, namely allele diversity (6.20), observed heterozygosity (0.57), expected heterozygosity (0.67) and mean polymorphism information content (0.60) values showed substantial within-breed genetic variability in this major breed of Rajasthan, despite accumulated inbreeding as reflected by high average inbreeding coefficient (F(IS) = 0.39). The Tharparkar population has not experienced a bottleneck in the recent past.  相似文献   

16.
Shell morphology and allozyme patterns of 17 enzymes are analysed within the isolated population of L. saxatilis Olivi (1792) from Venice, the type locality of the species. The shell morphology is compared to three different L. saxatilis phenotypes from Sweden, and showed to be similar to the brackish water 'tenebrosa' type. The Venice population is genetically more distant from British and Swedish populations than are the latter from each other. Less variability (heterozygosity) within the Venice compared to the Atlantic populations is probably a consequence of random genetic drift during a period of small population size.
The nomenclature of L. saxatilis in the Atlantic is discussed and it is suggested that until the exact taxonomic relationship between the Mediterranean and the Atlantic populations has been confirmed by, for example, cross-breeding experiments, the name 'saxatilis' should be kept for the non-Venetian populations (described by Maton (1797) under the name 'rudis').  相似文献   

17.
Forest musk deer (Moschus berezovskii) are rare as a result of poaching for musk and habitat loss. Some captive populations of forest musk deer have been established for decades in China. However, little genetic information is available for conservation management. In this paper, genetic variations, population structures, and the genetic bottleneck hypothesis were examined using 11 microsatellite loci from captive populations in Miyalo, Jinfeng and Maerkang in Sichuan Province, China. Estimates of genetic variability revealed substantial genetic variation in the three populations. A total of 142 different alleles were observed in 121 forest musk deer and the effective number of alleles per locus varied from 6.76 to 12.95. The average values of observed heterozygosity, expected heterozygosity, and Nei's expected heterozygosity were 0.552, 0.899 and 0.894 respectively. The overall significant (P < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 34.5%. The mean FST (P < 0.001) showed that approximately 90.2% of the genetic variation was within populations and 9.8% was across populations. The UPGMA diagram, based on Nei's unbiased genetic distance, indicated that the three populations were differentiated into two different groups and it agreed with their origin and history. Bottleneck tests indicated that all three populations have undergone a population bottleneck, suggesting a small effective population size. Acknowledging that the genetic structure of populations has crucial conservation implications, the present genetic information should be taken into account in management plans for the conservation of captive forest musk deer.  相似文献   

18.
利用微卫星分子标记分析了天津地区于桥水库、大黄堡湿地、七里海湿地、团泊水库和潮白新河5个野生大鳞副泥鳅群体的遗传多样性。5个群体在12个微卫星位点共检测到98个等位基因,平均等位基因数为8.500;有效等位基因数为2.713;平均观测杂合度为0.526;平均期望杂合度为0.544。5个群体间的遗传分化指数介于0.021~0.106之间,平均遗传分化指数为0.059,属中低水平的遗传分化。AMOVA分析结果显示,在总的变异中,94.1%的遗传变异来自群体内,5.90%的遗传变异来自于群体间。根据Nei’s遗传距离所绘制的系统树显示,于桥水库、团泊水库、七里海湿地和大黄堡湿地4个群体的遗传距离相对较小聚为一支,潮白新河群体单独为一支。遗传瓶颈效应分析表明,该5个群体近期未经受遗传瓶颈效应,处于突变-漂移平衡。总体来看,天津地区5个野生大鳞副泥鳅群体的遗传多样性较高,可作为品种选育的基础群体。  相似文献   

19.
The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.  相似文献   

20.
The macaque population of the Shimokita Peninsula represents the northernmost distribution of this species and is isolated from other populations in the Tohoku region of Japan. A previous protein-based study revealed a high level of genetic variability in this population and considerable differentiation from other populations. In order to reassess the genetic features of the Shimokita macaques, we examined 11 autosomal microsatellite loci and three Y chromosomal microsatellite loci. We observed considerable differentiation from other Japanese populations of macaques, but in contrast to the previous results, we observed significantly lower genetic variability in this population. There was a weak indication of a population bottleneck, suggesting a decay over time from an excess of heterozygotes that might be expected in the initial stages of a bottleneck. This may indicate that an ancient bottleneck occurred during the warm period after the last glacial period rather than a recent bottleneck due to hunting in modern times. The frequencies of private alleles were exceptionally high in the Shimokita population, suggesting that the difference in variability as determined in various studies was due to accidental sampling of marker loci with low power to resolve genetic variations in the protein-based studies. The assessments of interpopulation differentiation as determined using autosomal and Y chromosomal markers were highly correlated, and using both types of markers the Shimokita population was found to be the most differentiated of the study populations, probably due to infrequent gene flow with surrounding populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号