首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转化医学是近年来国际医学界推崇的一个重要医学理念,正日益成为生命科学和医学研究关注的热点。转化医学已不仅强 调临床医学与基础医学的结合,而且涉及多个学科之间的融会贯通。因此,医院科研管理的支持和重视程度转化医学实施的主要 动力,而科研项目的创新性、可行性是决定转化医学研究立项的关键。我院自2010 年成立转化医学研究中心以来,已将多项成果 成功转化并应用于临床实践,为生命科学研究领域中人类健康计划的发展提供了借鉴。本文结合我院实际,分析科研管理对转化 医学成果实施的促进作用,为医疗机构的科研管理人员提供参考。  相似文献   

2.
Translational research is a burgeoning science that shows potential to improve the transition of research from bench to bedside. This novel science explores all major aspects of preclinical and clinical issues which are relevant for the success of translational pharmaceutical or medical device/diagnostic innovations. This includes target risk assessment, biomarker evaluation and predictivity grading both for efficacy and toxicity, early human trial design adequate to guide stop/go decisions on grounds of biomarker panels, and biostatistical methods to analyze multiple readout situations and quantify risk projections.Representing a comparably novel science, rapid steroid actions have been recognized to carry potential clinical implications in various fields. Findings in this field have not yet been successfully translated into clinically relevant new medicines except for neurosteroids. A promising compound is the membrane estrogen receptor agonist STX, which may be applicable for estrogen withdrawal symptoms. Nongenomic vitamin D analogs may be useful as antiinflammatory, anticancer or diabetes preventing agents. Further the membrane thyroid receptor agonist tetrac may be useful in cancer treatment. Unfortunately lazaroids (membrane-only active glucocorticoids), which have been clinically tested as neuroprotective agents, had to be abandoned because of lacking clinical efficacy. Yet, the hierarchy of antirheumatic glucocorticoid action in regard to their clinical potency may better correlate with their membrane effects than their ability to bind to the classic glucocorticoid receptor.To improve the translational success of the rapid actions of steroids research, scientists should become familiar with major aspects of translational work and always seek for translational dimensions in their research.  相似文献   

3.
Translational cognitive neuroscience of dementia involves mainly two areas: the validation of newly developed dementia animal models and the preclinical assessment of novel drug candidates in such model animals. To validate new animal models, a multidomain panel (battery) approach is essential in that dementia is, by definition, not merely a memory disorder but rather a multidomain cognitive/behavior disorder: animal modeling with a certain type of dementia would develop cognitive impairments in multiple (two at minimum) domains in a specific order according to unique spreading patterns of its neuropathology. In new drug development, the availability of highly sensitive tools assessing animal cognition is crucial to the detection of cognitive decline at the earliest stage of the disease, which may be an optimal time point to test a drug candidate. Using interspecies translatable (analogous) cognitive tasks would also be necessary to successfully predict the efficacy of drug candidates in subsequent clinical trials. Currently, this translational prediction is seriously limited given discrepancies in behavioral assessment methods between animals and humans in the preclinical and clinical trials, respectively. Since neurodegenerative diseases are often accompanied by not only cognitive but also affective and movement disorders, simultaneous assessment of task-relevant locomotor behavior and motivation is also important to rule out the effects of potential confounders. The touchscreen operant platform may satisfy these needs by offering several advantages over conventional methodology. In this review, we discuss the touchscreen operant chamber system and highlight some of its qualities as a promising and desirable tool for translational research of dementia.  相似文献   

4.
The induced pluripotent state represents a decade-old Nobel prize-winning discovery. Human-induced pluripotent stem cells (hiPSCs) are generated by the nuclear reprogramming of any somatic cell using a variety of established but evolving methods. This approach offers medical science unparalleled experimental opportunity to model an individual patient’s disease “in a dish.” HiPSCs permit developmentally rationalized directed differentiation into any cell type, which express donor cell mutation(s) at pathophysiological levels and thus hold considerable potential for disease modeling, drug discovery, and potentially cell-based therapies. This review will focus on the translational potential of hiPSCs in clinical neurology and the importance of integrating this approach with complementary model systems to increase the translational yield of preclinical testing for the benefit of patients. This strategy is particularly important given the expected increase in prevalence of neurodegenerative disease, which poses a major burden to global health over the coming decades.  相似文献   

5.
Editorial comment Translational medicine is a new discipline which aims to eliminate the barrier between preclinical and clinical medicine. Here, Dr. Li discusses the application of translational medicine in the research, teaching and clinical work of Prof. Liu Shih-Hao, the founder of endocrinology in China, who was particularly renowned for his early work in calcium and phosphorus metabolism. This well-known success story can be traced back to an early appreciation of translational medicine by Prof. Liu Shih-Hao, and serves as an important and revelatory lesson for us all.  相似文献   

6.
A lot of resources and efforts have been directed to synthesizing potentially useful new chemical entities (NCEs) by pharmaceutical scientists globally. Detailed physicochemical characterization of NCEs in an industrial setup begins almost simultaneously with preclinical testing. Most NCEs possess poor water solubility posing bioavailability issues during initial preclinical screening, sometimes resulting in dropping out of an NCE with promising therapeutic activity. Selection of right formulation approach for an NCE, based on its physicochemical properties, can aid in improving its solubility-related absorption and bioavailability issues. The review focuses on preclinical formulations stressing upon different preclinical formulation strategies and deciphers the understanding of formulation approaches that could be employed. It also provides detailed information related to a vast pool of excipients available today, which is of immense help in designing preclinical formulations. Few examples mentioned, throw light on key aspects of preclinical formulation development. The review will serve as an important guide for selecting the right strategy to improve bioavailability of NCEs for academic as well as industrial formulation scientists.  相似文献   

7.
The American Association of Pharmaceutical Scientists (AAPS) National Biotechnology Conference Short Course “Translational Challenges in Developing Antibody-Drug Conjugates (ADCs),” held May 24, 2012 in San Diego, CA, was organized by members of the Pharmacokinetics, Pharmacodynamics and Drug Metabolism section of AAPS. Representatives from the pharmaceutical industry, regulatory authorities, and academia in the US and Europe attended this short course to discuss the translational challenges in ADC development and the importance of characterizing these molecules early in development to achieve therapeutic utility in patients. Other areas of discussion included selection of target antigens; characterization of absorption, distribution, metabolism, and excretion; assay development and hot topics like regulatory perspectives and the role of pharmacometrics in ADC development. MUC16-targeted ADCs were discussed to illustrate challenges in preclinical development; experiences with trastuzumab emtansine (T-DM1; Genentech) and the recently approved brentuximab vedotin (Adcetris®; Seattle Genetics) were presented in depth to demonstrate considerations in clinical development. The views expressed in this report are those of the participants and do not necessarily represent those of their affiliations.  相似文献   

8.
基础医学、药物研发和临床医学是三个不同的的领域,因此这些领域的很多生命科学研究成果经常无法及时应用于临床实践。转化医学是以疾病为中心,加速将基础研究的成果用于,临床诊断和治疗中,旨在有效的将三个领域有机结合在一起。分子影像学(molecularimaging,MI)可在活体上、在细胞和分子水平对生物学过程成像并进行定性和定量研究,为转化医学的实现提供了保证。分子影像技术采用无创的医学影像技术使活体状态下组织细胞中的特殊分子生物学特性得以直观揭示,主要用于对疾病早期诊断、疾病分期(分层)、疗效监测、指导疾病的个体化治疗以及新药的研发等领域。本文主要介绍分子影像的技术特点、其在转化医学中发挥的作用以及其在个体化治疗中临床意义进行综述。  相似文献   

9.
Stroke is one of the leading causes of death worldwide and the biggest reason for long-term disability. Basic research has formed the modern understanding of stroke pathophysiology, and has revealed important molecular, cellular and systemic mechanisms. However, despite decades of research, most translational stroke trials that aim to introduce basic research findings into clinical treatment strategies – most notably in the field of neuroprotection – have failed. Among other obstacles, poor methodological and statistical standards, negative publication bias, and incomplete preclinical testing have been proposed as ‘translational roadblocks’. In this article, we introduce the models commonly used in preclinical stroke research, discuss some of the causes of failed translational success and review potential remedies. We further introduce the concept of modeling ‘care’ of stroke patients, because current preclinical research models the disorder but does not model care or state-of-the-art clinical testing. Stringent statistical methods and controlled preclinical trials have been suggested to counteract weaknesses in preclinical research. We conclude that preclinical stroke research requires (1) appropriate modeling of the disorder, (2) appropriate modeling of the care of stroke patients and (3) an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.  相似文献   

10.
摘要:基础医学、药物研发和临床医学是三个不同的的领域,因此这些领域的很多生命科学研究成果经常无法及时应用于临床实 践。转化医学是以疾病为中心,加速将基础研究的成果用于临床诊断和治疗中,旨在有效的将三个领域有机结合在一起。分子影 像学(molecular imaging, MI) 可在活体上、在细胞和分子水平对生物学过程成像并进行定性和定量研究,为转化医学的实现提供 了保证。分子影像技术采用无创的医学影像技术使活体状态下组织细胞中的特殊分子生物学特性得以直观揭示,主要用于对疾 病早期诊断、疾病分期(分层)、疗效监测、指导疾病的个体化治疗以及新药的研发等领域。本文主要介绍分子影像的技术特点、其 在转化医学中发挥的作用以及其在个体化治疗中临床意义进行综述。  相似文献   

11.
Prospects for translational regenerative medicine   总被引:1,自引:0,他引:1  
Translational medicine is an evolutional concept that encompasses the rapid translation of basic research for use in clinical disease diagnosis, prevention and treatment. It follows the idea "from bench to bedside and back", and hence relies on cooperation between laboratory research and clinical care. In the past decade, translational medicine has received unprecedented attention from scientists and clinicians and its fundamental principles have penetrated throughout biomedicine, offering a sign post that guides modern medical research toward a patient-centered focus. Translational regenerative medicine is still in its infancy, and significant basic research investment has not yet achieved satisfactory clinical outcomes for patients. In particular, there are many challenges associated with the use of cell- and tissue-based products for clinical therapies. This review summarizes the transformation and global progress in translational medicine over the past decade. The current obstacles and opportunities in translational regenerative medicine are outlined in the context of stem cell therapy and tissue engineering for the safe and effective regeneration of functional tissue. This review highlights the requirement for multi-disciplinary and inter-disciplinary cooperation to ensure the development of the best possible regenerative therapies within the shortest timeframe possible for the greatest patient benefit.  相似文献   

12.
我国在精神分裂症的遗传学和生命组学研究方面取得了很大进展,如在全基因组关联分析(genome-wide association study,GWAS)方面工作获得了一系列成果.随着我国对重大疾病转化医学的逐步关注和重视,利用在精神分裂症上已经获得的广泛和深入的研究结果,寻找精神分裂症各种临床应用的生物标记物研究,系统性地建立适合于类似精神分裂症这类复杂疾病的早期诊断、干预和预防的临床咨询和应用体系等将是该疾病转化医学方面可实施的方法和案例.精神分裂症的转化医学方面还涉及精神分裂症患者的个体化用药方案建立.药物疗效和药物不良反应的个体差异具有较复杂的环境和遗传背景,结合精神分裂症的遗传学病因和药物作用的遗传学差异,将有效发挥治疗药物的功效,并降低重大不良反应在敏感个体上的发生.对精神分裂症这类给国家和社会带来极其重大负担的重大疾病,积极推动我国在此类疾病上的基础研究成果转化和转化医学的实施具有重要的社会效应和积极的带动作用.  相似文献   

13.
The objective of the present study was to conduct a short-term international course on translational physiology for medical students from Wright State University and the University of Iowa. The goals were to 1) provide students with an exposure to the academic, cultural, and medical environments in Brazil; 2) promote awareness of the global medical community; and 3) provide an academic course focused on translational physiology. An evaluation of the students was conducted to determine whether such a short-term course might be useful in the medical curriculum. The 2-wk course was held in the summer of 2005 at the University of S?o Paulo School of Medicine in Ribeir?o Preto, Brazil, for 23 American students. The program included presentations of basic and clinical topics, meetings with medical students, and clinical presentations. The program finished with student attendance at a scientific meeting sponsored by the Brazilian Society of Hypertension. Student surveys evaluated issues related to perceived treatment, Brazilian medical school environment, culture and personal attributes, and career aspirations. The international Medical Sciences Translational Physiology course for medical students provided a brief, but intense, experience. It gave students a picture of the medical environment in Brazil and an appreciation for the differences and similarities in cultures. Most students reported that it was a positive experience that would be beneficial to their careers. In conclusion, a short-term international course provides an efficient means for medical students to experience aspects of global medical science.  相似文献   

14.
The promise of science lies in expectations of its benefits to societies and is matched by expectations of the realisation of the significant public investment in that science. In this paper, we undertake a methodological analysis of the science of biobanking and a sociological analysis of translational research in relation to biobanking. Part of global and local endeavours to translate raw biomedical evidence into practice, biobanks aim to provide a platform for generating new scientific knowledge to inform development of new policies, systems and interventions to enhance the public’s health. Effectively translating scientific knowledge into routine practice, however, involves more than good science. Although biobanks undoubtedly provide a fundamental resource for both clinical and public health practice, their potentiating ontology—that their outputs are perpetually a promise of scientific knowledge generation—renders translation rather less straightforward than drug discovery and treatment implementation. Biobanking science, therefore, provides a perfect counterpoint against which to test the bounds of translational research. We argue that translational research is a contextual and cumulative process: one that is necessarily dynamic and interactive and involves multiple actors. We propose a new multidimensional model of translational research which enables us to imagine a new paradigm: one that takes us from bench to bedside to backyard and beyond, that is, attentive to the social and political context of translational science, and is cognisant of all the players in that process be they researchers, health professionals, policy makers, industry representatives, members of the public or research participants, amongst others.  相似文献   

15.
从机构建设和科学研究两个角度分析国内医院转化医学发展现状。机构建设方面,美国转化医学中心的依托单位多为大学,组织架构较完善。但国内的依托单位多为医院或临床中心,较为分散,多为自发成立,缺乏国家层面的规划部署,难以形成比较高效的转化医学研究体系。但机构建设的迅速发展带来了转化研究成果的增多。国内转化医学研究多为从基础医学的角度探索疾病的致病机制和干预措施,如将实验室技术、细胞生物学、生物化学与分子生物学、药理学、应用生物技术等和临床问题的整合,特别是肿瘤、心血管病、内分泌与代谢病、消化系与腹部疾病等临床领域的转化研究受到了国内较多的关注。最后提出国内医院转化医学发展的策略和建议。  相似文献   

16.
Jucker M 《Nature medicine》2010,16(11):1210-1214
Age-related neurodegenerative diseases are largely limited to humans and rarely occur spontaneously in animals. Genetically engineered mouse models recapitulate aspects of the corresponding human diseases and are instrumental in studying disease mechanisms and testing therapeutic strategies. If considered within the range of their validity, mouse models have been predictive of clinical outcome. Translational failure is less the result of the incomplete nature of the models than of inadequate preclinical studies and misinterpretation of the models. This commentary summarizes current models and highlights key questions we should be asking about animal models, as well as questions that cannot be answered with the current models.  相似文献   

17.
Translational research using evidence-based and comparative effectiveness research continues to evolve, becoming a useful tool in improving informed consent and decision-making in the clinical setting. While in development, emerging technologies, including cellular and molecular biology, are leading to establishing evidence-based dental practices. One emerging technology, which conjoins bench proteomic findings to clinical decision-making for treatment intervention, is the Translational Evidence Mechanism. This mechanism was developed to be a foundation for a compact between researcher, translational researcher, clinician, and patient. The output of such a mechanism is the clinical practice guideline (CPG), an interactive tool for dentists and patients to game evidence in reaching optimum clinical decisions that correspond to individual patient preferences and values. As such, the clinical practice guideline requires the vesting of decision, utility, and cost best evidence. Evidence-based research provides decision data, a first attempt at supporting decision-making by providing best outcome data. Since then comparative effectiveness research has emerged, using systematic review analysis to compare similar treatments or procedures in maximizing the choice of the most effective cost/benefit option within the context of best evidence. With innovation in the clinical practice guideline for optimizing efficacy and comparative effectiveness research, evidence-based practices will shape a new approach to health-based systems that adhere to shared decision-making between bench scientists, healthcare providers and patients.  相似文献   

18.
Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research—translating basic science results into new interventions—and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

What to Learn in This Chapter

Text mining is an established field, but its application to translational bioinformatics is quite new and it presents myriad research opportunities. It is made difficult by the fact that natural (human) language, unlike computer language, is characterized at all levels by rampant ambiguity and variability. Important sub-tasks include gene name recognition, or finding mentions of gene names in text; gene normalization, or mapping mentions of genes in text to standard database identifiers; phenotype recognition, or finding mentions of phenotypes in text; and phenotype normalization, or mapping mentions of phenotypes to concepts in ontologies. Text mining for translational bioinformatics can necessitate dealing with two widely varying genres of text—published journal articles, and prose fields in electronic medical records. Research into the latter has been impeded for years by lack of public availability of data sets, but this has very recently changed and the field is poised for rapid advances. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

19.
Translational research using evidence-based and comparative effectiveness research continues to evolve, becoming a useful tool in improving informed consent and decision-making in the clinical setting. While in development, emerging technologies, including cellular and molecular biology, are leading to establishing evidence-based dental practices. One emerging technology, which conjoins bench proteomic findings to clinical decision-making for treatment intervention, is the Translational Evidence Mechanism. This mechanism was developed to be a foundation for a compact between researcher, translational researcher, clinician, and patient. The output of such a mechanism is the clinical practice guideline (CPG), an interactive tool for dentists and patients to game evidence in reaching optimum clinical decisions that correspond to individual patient preferences and values. As such, the clinical practice guideline requires the vesting of decision, utility, and cost best evidence. Evidence-based research provides decision data, a first attempt at supporting decision-making by providing best outcome data. Since then comparative effectiveness research has emerged, using systematic review analysis to compare similar treatments or procedures in maximizing the choice of the most effective cost/benefit option within the context of best evidence. With innovation in the clinical practice guideline for optimizing efficacy and comparative effectiveness research, evidence-based practices will shape a new approach to health-based systems that adhere to shared decision-making between bench scientists, healthcare providers and patients.  相似文献   

20.
The use of oncolytic viruses forms an appealing approach for cancer treatment. On the one hand the viruses replicate in, and kill, tumor cells, leading to their intra-tumoral amplification. On the other hand the viral infection will activate virus-directed immune responses, and may trigger immune responses directed against tumor cells and tumor antigens. To date, a wide variety of oncolytic viruses is being developed for use in cancer treatment. While the development of oncolytic viruses has often been initiated by researchers in academia and other public institutions, a large majority of the final product development and the testing of these products in clinical trials is industry led. As a consequence relatively few pre-clinical and clinical studies evaluated different oncolytic viruses in competitive side-by-side preclinical or clinical studies. In this review we will summarize the steps and considerations essential in the development and characterization of oncolytic viruses, and describe our multidisciplinary academic consortium, which involves a dozen departments in three different Dutch universities, collaborating in the development of oncolytic viruses. This consortium has the ambition to develop a small series of oncolytic viruses and to evaluate these in various cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号