首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a constitutive model for predicting the nonlinear viscoelastic behavior of soft biological tissues and in particular of ligaments. The constitutive law is a generalization of the well-known quasi-linear viscoelastic theory (QLV) in which the elastic response of the tissue and the time-dependent properties are independently modeled and combined into a convolution time integral. The elastic behavior, based on the definition of anisotropic strain energy function, is extended to the time-dependent regime by means of a suitably developed time discretization scheme. The time-dependent constitutive law is based on the postulate that a constituent-based relaxation behavior may be defined through two different stress relaxation functions: one for the isotropic matrix and one for the reinforcing (collagen) fibers. The constitutive parameters of the viscoelastic model have been estimated by curve fitting the stress relaxation experiments conducted on medial collateral ligaments (MCLs) taken from the literature, whereas the predictive capability of the model was assessed by simulating experimental tests different from those used for the parameter estimation. In particular, creep tests at different maximum stresses have been successfully simulated. The proposed nonlinear viscoelastic model is able to predict the time-dependent response of ligaments described in experimental works (Bonifasi-Lista et al., 2005, J. Orthopaed. Res., 23, pp. 67-76; Hingorani et al., 2004, Ann. Biomed. Eng., 32, pp. 306-312; Provenzano et al., 2001, Ann. Biomed. Eng., 29, pp. 908-214; Weiss et al., 2002, J. Biomech., 35, pp. 943-950). In particular, the nonlinear viscoelastic response which implies different relaxation rates for different applied strains, as well as different creep rates for different applied stresses and direction-dependent relaxation behavior, can be described.  相似文献   

2.
Microstructurally based models for bio-artificial tissues are needed to predict in vivo mechanical behavior and to validate assumptions for models of biologic tissues. We develop a microstructural model, based on on Zahalak et al. (2000) [Biophys 79(5):2369–2381], to describe matrix and tissue anisotropy observed in recent biaxial tests of fibroblast populated collagen vessels (FPCVs) with different cell orientations (Wagenseil et al. in Ann Biomed Eng 32(5):720–731 2004). The model includes pseudo-elastic cell behavior and pseudo-elastic, non-linear matrix behavior with recruitment of initially buckled collagen fibers. We obtained estimates of collagen matrix parameters from measurements of FPCVs treated with 2× 10−6 M Cytochalasin D and used these estimates to determine cell parameters in FPCVs activated with 5% fetal calf serum. The estimated stiffness of individual fibroblasts was 41–1,165 kPa. Parameter estimates for both cell and matrix were influenced by the non-linearity of the biaxial test data, making it difficult to obtain unique parameter values for some experiments. Additional microstructural measurements of the collagen matrix may help to more precisely determine the relative contributions of cells and matrix.  相似文献   

3.
4.
Modeling of respiratory system impedances in dogs   总被引:1,自引:0,他引:1  
Mechanical impedances between 4 and 64 Hz of the respiratory system in dogs have been reported (A.C. Jackson et al. J. Appl. Physiol. 57: 34-39, 1984) previously by this laboratory. It was observed that resistance (the real part of impedance) decreased slightly with frequency between 4 and 22 Hz then increased considerably with frequency above 22 Hz. In the current study, these impedance data were analyzed using nonlinear regression analysis incorporating several different lumped linear element models. The five-element model of Eyles and Pimmel (IEEE Trans. Biomed. Eng. 28: 313-317, 1981) could only fit data where resistance decreased with frequency. However, when the model was applied to these data the returned parameter estimates were not physiologically realistic. Over the entire frequency range, a significantly improved fit was obtained with the six-element model of DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956), since it could follow the predominate frequency-dependent characteristic that was the increase in resistance. The resulting parameter estimates suggested that the shunt compliance represents alveolar gas compressibility, the central branch represents airways, and the peripheral branch represents lung and chest wall tissues. This six-element model could not fit, with the same set of parameter values, both the frequency-dependent decrease in Rrs and the frequency-dependent increase in resistance. A nine-element model recently proposed by Peslin et al. (J. Appl. Physiol. 39: 523-534, 1975) was capable of fitting both the frequency-dependent decrease and the frequency-dependent increase in resistance. However, the data only between 4 and 64 Hz was not sufficient to consistently determine unique values for all nine parameters.  相似文献   

5.
We derive the values for the intracellular and extracellular conductivities needed for bidomain simulations of cardiac electrophysiology using homogenization of partial differential equations. In our model, cardiac myocytes are rectangular prisms and gap junctions appear in a distributed manner as flux boundary conditions for Laplace’s equation. Using directly measurable microproperties such as cellular dimensions and end-to-end and side-to-side gap junction coupling strengths, we inexpensively obtain effective conductivities close to those given by simulations with a detailed cyto-architecture (Stinstra et al. in Ann. Biomed. Eng. 33:1743–1751, 2005). This model provides a convenient framework for studying the effect on conductivities of aligned vs. brick-like arrangements of cells and the effect of different distributions of gap junctions along the myocyte membranes.  相似文献   

6.
Connexons and cell adhesion: a romantic phase   总被引:3,自引:1,他引:2  
Recent evidence indicates, that gap junction forming proteins do not only contribute to intercellular communication (Kanno and Saffitz in Cardiovasc Pathol 10:169-177, 2001; Saez et al. in Physiol Rev 83:1359-1400, 2003), ion homeostasis and volume control (Goldberg et al. in J Biol Chem 277:36725-36730, 2002; Saez et al. in Physiol Rev 83:1359-1400, 2003). They also serve biological functions in a mechanical sense, supporting adherent connections between neighbouring cells of epithelial and non-epithelial tissues (Clair et al. in Exp Cell Res 314:1250-1265, 2008; Shaw et al. in Cell 128:547-560, 2007), where they stabilize migratory pathways in the developing central nervous system (Elias et al. in Nature 448:901-907, 2007; Malatesta et al. in Development 127:5253-5263, 2000; Noctor et al. in Nature 409:714-720, 2001; Rakic in Brain Res 33:471-476, 1971; J Comp Neurol 145:61-83 1972; Science 241:170-176, 1988), or mediate polarized movements and directionality of neural crest cells during organogenesis (Kirby and Waldo in Circ Res 77:211-215, 1995; Xu et al. in Development 133:3629-3639, 2006). Since, most data describing adhesive properties of gap junctions delt with connexin 43 (Cx43) (Beardslee et al. in Circ Res 83:629-635, 1998), we will focus our brief review on this isoform.  相似文献   

7.
Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).  相似文献   

8.
The extracellular matrix in many biological tissues is adapted to its mechanical environment. In this study, a phenomenological model for collagen remodelling is introduced that incorporates angular remodelling (fibre reorientation) and the adaptation of the so-called transition stretch. This is achieved by introducing a local stress-free configuration for the collagen network by a multiplicative decomposition of the deformation gradient and the appropriate definition of the anisotropic free Helmholtz energy potentials and structure tensors. The collagen network is either treated using discrete fibre directions or a continuous angular distribution. The first part of the study illustrates the influence of force- and displacement-controlled loading on either stress- or deformation-driven remodelling processes in tissues with various degrees of fibre reinforcement. The model is then applied to recent experimental studies of collagen remodelling, specifically periosteum adaptation (Foolen et?al. in J Biomech 43(16):3168–3176, 2010), collagen gel (Thomopoulos et?al. in J Biomech Eng 127(5):742–750, 2005) and fibrin cruciform (Sander et?al. in Ann Biomed Eng 1–16, 2010) compaction. The model is able to capture the basic effects of an adapting transition stretch over time in the periosteal simulations, as well as the compaction and the development of structural anisotropy in the collagen and fibrin gels. The model can potentially be applied to elucidate structure–function relationships, better interpret in vitro experiments involving collagen remodelling, and help investigate aspects of certain pathologies, such as connective tissue contracture.  相似文献   

9.
In plants, reactive oxygen species (ROS) are short-lived molecules produced through various cellular mechanisms in response to biotic and abiotic stimuli. ROS function as second messengers for hormone signaling, development, oxygen deprivation, programmed cell death, and plant–pathogen interactions. Recent research on ROS-mediated responses has produced stimulating findings such as the specific sources of ROS production, molecular elements that work in ROS-mediated signaling and homeostasis, and a ROS-regulated gene network (Neill et al., Curr Opin Plant Biol 5:388–395, 2002a; Apel and Hirt, Annu Rev Plant Biol 55:373–399, 2004; Mittler et al., Trends Plant Sci 9:490–498, 2004; Mori and Schroeder, Plant Physiol 135:702–708, 2004; Kwak et al., Plant Physiol 141:323–329, 2006; Torres et al., Plant Physiol 141:373–378, 2006; Miller et al., Physiol Plant 133:481–489, 2008). In this review, we highlight new discoveries in ROS-mediated abscisic acid (ABA) signaling. Drs. Daeshik Cho and June M. Kwak are the corresponding authors for this paper.  相似文献   

10.
Evidence is presented to show that self-sustained oscillations of purely hemodynamical origin are possible in some arcade-type microvascular networks supplied with steady boundary conditions, but that in others the oscillations disappear with sufficient reduction of the time step Δt, showing them to be numerical artefacts. In an attempt to elucidate the mechanisms involved in the onset of fluctuations, we proceed to perform a linear stability analysis for the convective model of Kiani et al. (Microvasc. Res. 45:219–232, 1993; Am. J. Physiol. 266(35):H1822–H1828, 1994), and show that this leads via a system of delay differential equations to a nonlinear eigenvalue problem. This result generalises the characteristic equation obtained by Carr et al. (Ann. Biomed. Eng. 33:764–771, 2005) and Geddes et al. (SIAM J. Appl. Dyn. Syst. 6(4):694–727, 2007) who solved a special case in a two node network. An implicit numerical method is proposed for the computation of blood flows in networks using the convective model. In a moderate size subnetwork of one of the networks chosen by Kiani et al. (Am. J. Physiol. 266(35):H1822–H1828, 1994), the topology, vessel lengths, and diameters of which were based on microvascular networks in the rat mesentery, we compare results generated using the original explicit numerical method of Kiani et al. (Am. J. Physiol. 266(35):H1822–H1828, 1994) with those from our implicit scheme. From the linear stability theory, a critical value D RBC,crit of a red blood cell diameter parameter D RBC in the plasma skimming model of Fenton et al. (Pflügers Arch. 403:396–401, 1985b) is identified for the onset of oscillations about steady state and both the explicit and implicit methods are used to calculate the inflow hematocrit solutions in all vessels of the subnetwork at the critical parameter value, subject to perturbed initial conditions. The results of the implicit method are demonstrated to be in excellent and superior agreement with the predictions of the linear analysis in this case. For values of D RBC slightly larger than D RBC,crit the bifurcating periodic solutions calculated using either the explicit or implicit schemes are characteristic of those of a supercritical Hopf bifurcation and the graphs of D RBC vs. oscillation amplitude would seem to converge as Δt→0.  相似文献   

11.
The neurons in the mammalian (gerbil, cat) dorsal cochlear nucleus (DCN) have responses to tones and noise that have been used to classify them into unit types. These types (I–V) are based on excitatory and inhibitory responses to tones organized into plots called response maps (RMs). Type I units show purely excitatory responses, while type V units are primarily inhibited. A computational model of the neural circuitry of the mammalian DCN, based on the MacGregor neuromime, was used to investigate RMs of the principal cells (P-cells) that represent the fusiform and giant cells. In gerbils, fusiform cells have been shown to have primarily type III unit response properties; however, fusiform cells in the cat DCN are thought to have type IV unit response properties. The DCN model is based on a previous computational model of the cat (Hancock and Voigt Ann Biomed Eng 27: 73–87, 1999) and gerbil (Zheng and Voigt Ann Biomed Eng 34: 697–708, 2006) DCN. The basic model for both species is architecturally the same, and to get either type III unit RMs or type IV unit RMs, connection parameters were adjusted. Interestingly, regardless of the RM type, these units in gerbils and cats show spectral notch sensitivity and are thought to play a role in sound localization in the median plane. In this study, further parameter adjustments were made to systematically explore their effect on P-cell RMs. Significantly, type I, type III, type III-i, type IV, type IV-T and type V unit RMs can be created for the modeled P-cells. Thus major RMs observed in the cat and gerbil DCN are recreated by the model. These results suggest that RMs of individual DCN projection neurons are the result of specific assortment of excitatory and inhibitory inputs to that neuron and that subtle differences in the complement of inputs can result in different RM types. Modulation of the efficacy of certain synapses suggests that RM type may change dynamically.  相似文献   

12.
ClC-1 belongs to the gene family of CLC Cl(-) channels and Cl(-)/H(+) antiporters. It is the major skeletal muscle chloride channel and is mutated in dominant and recessive myotonia. In addition to the membrane-embedded part, all mammalian CLC proteins possess a large cytoplasmic C-terminal domain that bears two so-called CBS (from cystathionine-beta-synthase) domains. Several studies indicate that these domains might be involved in nucleotide binding and regulation. In particular, Bennetts et al. (J. Biol. Chem. 2005. 280:32452-32458) reported that the voltage dependence of hClC-1 expressed in HEK cells is regulated by intracellular ATP and other nucleotides. Moreover, very recently, Bennetts et al. (J. Biol. Chem. 2007. 282:32780-32791) and Tseng et al. (J. Gen. Physiol. 2007. 130:217-221) reported that the ATP effect was enhanced by intracellular acidification. Here, we show that in striking contrast with these findings, human ClC-1, expressed in Xenopus oocytes and studied with the inside-out configuration of the patch-clamp technique, is completely insensitive to intracellular ATP at concentrations up to 10 mM, at neutral pH (pH 7.3) as well as at slightly acidic pH (pH 6.2). These results have implications for a general understanding of nucleotide regulation of CLC proteins and for the physiological role of ClC-1 in muscle excitation.  相似文献   

13.
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilized to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain (epsilonD) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, epsilonD increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using epsilonD, the tangent modulus of collagen fibrils was estimated to be 95.5+/-25.5 MPa, which was approximately 27 times higher than the tissue tensile tangent modulus of 3.58+/-1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and epsilonD remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min epsilonD was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a "load-locking" behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.  相似文献   

14.
15.
Böhmer C  Wehner F 《FEBS letters》2001,494(1-2):125-128
The epithelial Na(+) channel (ENaC) is composed of the subunits alpha, beta, and gamma [Canessa et al., Nature 367 (1994) 463-467] and typically exhibits a high affinity to amiloride [Canessa et al., Nature 361 (1993) 467-470]. When expressed in Xenopus oocytes, conflicting results were reported concerning the osmo-sensitivity of the channel [Ji et al., Am. J. Physiol. 275 (1998) C1182-C1190; Hawayda and Subramanyam, J. Gen. Physiol. 112 (1998) 97-111; Rossier, J. Gen. Physiol. 112 (1998) 95-96]. Rat hepatocytes were the first system in which amiloride-sensitive sodium currents in response to hypertonic stress were reported [Wehner et al., J. Gen. Physiol. 105 (1995) 507-535; Wehner et al., Physiologist 40 (1997) A-4]. Moreover, all three ENaC subunits are expressed in these cells [B?hmer et al., Cell. Physiol. Biochem. 10 (2000) 187-194]. Here, we injected specific antisense oligonucleotides directed against alpha-rENaC into single rat hepatocytes in confluent primary culture and found an inhibition of hypertonicity-induced Na(+) currents by 70%. This is the first direct evidence for a role of the ENaC in cell volume regulation.  相似文献   

16.
FGF and EGF act synergistically to induce proliferation in BC3H1 myoblasts   总被引:1,自引:0,他引:1  
BC3H1 muscle cells proliferate when grown in high concentrations of FBS (20%). Lowering the FBS concentration to 0.5% causes the cells to stop proliferating and is permissive for the morphological and biochemical differentiation of BC3H1 cells. Exposure of differentiated BC3H1 myocytes to high concentrations of serum or to the purified growth factors FGF or TGF-b induced a shutdown of this differentiation program but did not induce cell proliferation (Olson et al., J. Cell Biol., 103:1799-1805, 1986; Lathrop et al., J. Cell Biol., 100:1540-1547, 1985, and J. Cell Biol., 101:2194-2198, 1985). We explored the possibility that BC3H1 cells require factors to act synergistically to induce proliferation. We found that EGF and FGF function in a synergistic fashion to stimulate BC3H1 proliferation. Moreover, the temporal requirement for these growth factors suggest that they are functioning as competence and progression factors for BC3H1 cell proliferation.  相似文献   

17.
Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.  相似文献   

18.
Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression (Halazonetis et al., 2008; Motoyama and Naka, 2004; Zhou and Elledge, 2000). The "turn off" process of the DDR upon satisfaction of DNA repair, also known as "checkpoint recovery", involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G2/M transition (Archambault et al., 2007; Jackson, 2006; Zhao et al., 2008; Yu et al., 2004; Yu et al., 2006; Zhao et al., 2006) and helps maintain M phase through inhibition of PP2A/B55δ (Burgess et al., 2010; Castilho et al., 2009; Goldberg, 2010; Lorca et al., 2010; Vigneron et al., 2009), the principal phosphatase for Cdk-phosphorylated substrates. Here we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild type, but not kinase dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl over-expression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA  相似文献   

19.
Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370-379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453-1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27-34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318-328, 2010; Rehman J, et al., Circulation 109: 1292-1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682-2690, 2008; Traktuev DO, et al., Circ Res 102: 77-85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.  相似文献   

20.
Stamler JS  Sun QA  Hess DT 《Cell》2008,133(1):33-35
Dysregulated S-nitrosylation of proteins characterizes a broad array of human disorders, but its role in disease etiology is not well understood. Two new studies (Durham et al., 2008; Bellinger et al., 2008) now show that hyper-S-nitrosylation of the ryanodine receptor calcium release channel (RyR1) in skeletal muscle disrupts calcium ion flux. This disruption underlies the impaired contractility and cellular damage of skeletal muscle during strenuous exercise and in a spectrum of congenital muscle disorders including malignant hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号