首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The two statocysts of the veliger larva of Rostanga pulchra are positioned within the base of the foot. They are spherical, fluid-filled capsule that contain a large, calcareous statolith and several smaller concretions. The epithelium of the statocyst is composed of 10 ciliated sensory cells (hair cells) and 11 accessory cells. The latter group stains darkly and includes 2 microvillous cells, 7 supporting cells, and 2 glial cells. The hair cells stain lightly and each gives rise to an axon; two types can be distinguished. The first type, in which a minimum of 3 cilia are randomly positioned on the apical cell membrane, is restricted to the upper portion of the statocyst. The second type, in which 9 to 11 cilia are arranged in a slightly curved row, is found exclusively around the base of the statocyst. Each statocyst is connected dorso-laterally to the ipsilateral cerebral ganglion by a short static nerve, formed by axons arising from the hair cells. Ganglionic neurons synapse with these axons as the static nerve enters the cerebral ganglion. The lumen of the statocyst is continuous with a blind constricted canal located beneath the static nerve.A diagram showing the structure of the statocyst and its association with the nervous system is presented. Possible functions of the statocyst in relation to larval behavior are discussed.  相似文献   

2.
The notion that statocysts originated from an infolding of ectoderm lined by ciliated sensory cells has been challenged with evidence of capsule-limited, non-ciliary statocysts in several independent phyla. Statocysts in turbellarians primitively lack cilia and are embedded within or closely adjoined to the cerebral ganglion; they are likely to be derived from nervous tissue. We investigated the development of the simple statocyst in an acoel turbellarian, a statocyst consisting of three cells. Observations of serial TEM sections of embryos at different stages of development support the hypothesis of an inner (non-epithelial) origin of the statocyst. First, a three-cell complex is delimited by a basal lamina; it then undergoes cavitation by swelling, autophagy, and fluid secretion. The statocyst becomes discernible within the precursor ganglion cells while they still contain yolk inclusions. The two outer (parietal) cells, enclosed together by a 10-nm-thick basal lamina, arrange themselves in an ovoid of about 10 µm diameter and surround the inner statolith-forming cell. The statolith is formed later within vacuoles of the statolith-forming cell.  相似文献   

3.
4.
Zusammenfassung Die Statocyste von Aplysia limacina zeigt in ihrem Bau keine wesentliche Abweichung vom durchschnittlichen Gastropoden-Typ. Besondere statolithfreie Räume oder Sinneshaare, wie sie von Tieren mit echtem Rotationssinn bekannt sind, wurden nicht angetroffen.Frei schwimmende, aus ihrer Normallage gebrachte Aplysien zeigen Lagekorrekturbewegungen, bei denen der Kopfteil führt. Auch fixierte und im Wasser hochgehobene Aplysien zeigen nach Drehung um horizontale Achsen kompensatorische Kopfstellreflexe. Auf Drehung um die Vertikalachse wird nicht reagiert. Einseitige Entstatung (Durchschneidung des N. staticus) ruft keinen, beiderseitige Entstatung einen vollständigen Ausfall der statischen Lagekorrektur- und Reflex-bewegungen hervor; die schwimmende Aplysia vollführt dann Purzelbäume. Taktile Reize vom Untergrund unterstützen die Lageorientierung. Ein orientierender Lichteinfluß machte sich nicht geltend.Nach einseitiger Durchschneidung des Cerebro-Pedal-Konnektivs reagiert eine fixierte Aplysia nur mehr in ipsilateraler Seitenlage mit der kompensatorischen Kopfdrehung zur intakten Seite hin; in kontralateraler Seitenlage wird nicht mehr reagiert. Das Ergebnis der Ausschaltversnche (Tabelle, S. 49) führt zu Schluß-folgerungen über den Verlauf der statischen Reflexbahnen, die in einem Diagramm (Abb. 7, S. 53) zusammengefaßt sind.Diese und andere Befunde werden in Zusammenhang mit den Ergebnissen früherer Autoren diskutiert. Bezüglich des Reizvorganges wird angenommen, daß auch in der Schneckenstatocyste Scherung der Cilien den effektiven, physiologisch adäquaten Reiz darstellt.
Structure and functioning of the statocyst in the gastropod Aplysia limacina
Summary The statocyst of Aplysia limacina is a rounded vesicle with a diameter of 200–250 . Its wall is composed of two kinds of cells. The outer supporting cells are separate cells in fresh tissue; only under the influence of pressure or fixing agents their walls burst and artificial syncytia are created. The inner sense or giant cells are on their inner surface covered with motile cilia. Each statocyst of Aplysia contains 13 sense cells; their nervous offshoots constitute the statocyst nerve which runs towards the cerebral ganglion. The statolith is a cluster of about 1000 loosely aggregated chalk particles (statoconia). It fills the greater part of the statocyst lumen and is lightly moved by the cilia. Special statolith-free cavities or sense hairs, such as are known from animals with a true rotation sense, were not found in the statocyst of Aplysia.Freely swimming Aplysiae perform correction movements with their head leading, when they are brought out of their normal position in space. Likewise, fixed Aplysiae, when lifted up in the water and rolled or tilted about horizontal axes, show compensatory static head reflexes. Rotation around a vertical axis causes no response. Unilateral section of the statocyst nerve causes neither a loss of the position reflexes nor any asymmetry of posture or movement. Bilateral section of this nerve, however, abolishes all correction movements and compensatory reflexes; swimming animals perform somersaults. Tactile stimuli from the underground support the animal's spatial orientation. An orienting influence of light was not observed.After unilateral section of the cerebro-pedal connective a fixed Aplysia only responds when rolled the towards ipsilateral side (with a compensatory turn of the head towards the contralateral side); when rolled 90° towards the controlateral side no reaction occurs. The results of the elimination experiments (Table, p. 49) lead to the following conclusions: 1) from each statocyst two reflex pathways originate, one of which is activated after a roll around the long axis to the left side and causes a head turn to the right, whereas the other one comes into action after a roll to the right side and causes a head turn to the left; 2) the pathways of both statocysts which turn the head to the left run from the cerebral ganglion through the left cerebro-pedal connective towards the left pedal ganglion; both pathways which turn the head to the right run through the right cerebropedal connective towards the right pedal ganglion (diagram, Fig. 7, p. 53).These and other results are discussed in relation to data of earlier investigations. The course of the static nerve as shown morphologically to occur in other gastropods resembles closely the pathways postulated for Aplysia on physiological grounds. With regard to the process involved in stimulation it is assumed that in the statocyst of gastropods, like in other static organs, a shearing force exerted on the cilia represents the effective, physiologically adequate stimulus. Recent findings about the submicroscopical structure of the cilia in the statocyst of gastropods as well as about the mechanical sensitivity of motile cilia give this assumption strong support.
  相似文献   

5.
A pair of statocysts are located in the periganglionic connective tissue of the pedal ganglia of the opisthobranch mollusc Pleurobranchaea japonica. Light- and electron-microscopic observations show that the sensory epithelium of the statocyst consists of 13 disk-shaped hair cells. Each hair cell sends a single axon to the cerebral ganglion through the static nerve. Neurotransmitters in the hair cells were examined by means of immunocytochemistry. Our results show that the 13 sensory hair cells include two SCPB-, three FMRFamide-, and eight histamine-like immunoreactive cells. One hair cell contains a transmitter substance other than SCPB-, FMRFamide, histamine, serotonin, or GABA. One of the two SCPB-like immunoreactive cells, located in the ventral region of the statocyst, is the largest cell in the statocyst. The other, located in the anterodorsal region, shows co-immunoreactivity to both SCPB and FMRFamide antisera. Among the three FMRFamide-like immunoreactive hair cells, one is located in the posteroventral region, separated from the other two, which are adjacent to each other in the anterodorsal region. All the eight histamine-like immunoreactive hair cells are adjacent to one another, occupying the remainder of a triangular pyramid-shaped region. These immunoreactive cells are symmetrically placed in the right and left statocysts. This mosaic arrangement was identical among specimens. Thus the static nerve may code information about position or movement of the statoliths, with the use of different transmitters in the mosaic arrangement of the hair cells.  相似文献   

6.
A number of cerebral B-neurons of Aplysia californica were activated by tactile stimulation of the statocysts and by electrical stimulation of the static nerve. Types of responses recorded included antidromic spike, monosynaptic EPSP with or without spike and polysynaptic EPSPs. Some of the B-neurons were inhibited by trains of electrical stimulation of the static nerve. Hyperpolarization was mostly preceded by a short increase of spiking, usually during stimulation. Some A-neurons also responded with inhibition. The statocyst nerve contained axons carrying information not only from the statocysts to the cerebral ganglion but also from the cerebral ganglion to the statocyst. The latter pathway could be activated by tactile stimulation of the tentacles. Activation of either static nerves resulted in the increase of activity of the other static nerve through the cerebral ganglion, suggesting interaction between the two statocysts.  相似文献   

7.
Sorrentino M., Manni L., Lane N. J. and Burighel P. 2000. Evolution of cerebral vesicles and their sensory organs in an ascidian larva. —Acta Zoologica (Stockholm) 81 : 243–258 The ascidian larval nervous system consists of the brain (comprising the visceral ganglion and the sensory vesicle), and, continuous with it, a caudal nerve cord. In most species two organs, a statocyst and an ocellus with ciliary photoreceptors, are contained in the sensory vesicle. A third presumptive sensory organ was sometimes found in an ‘auxiliary’ ganglionic vesicle. The development and morphology of the sensory and auxiliary ganglionic vesicles in Botryllus schlosseri and their associated organs was studied. The sensory vesicle contains a unique organ, the photolith, responding to both gravity and light. It consists of a unicellular statocyst, in the form of an expanded pigment cup receiving six photoreceptor cell extensions. Presumptive mechano‐receptor cells (S1 cells), send ciliary and microvillar protrusions to contact the pigment cup. A second group of distinctive cells (S2), slightly dorsal to the S1 cells, have characteristic microvillar extensions, resembling photoreceptor. We concur with the idea that the photolith is new and derived from a primitive statocyst and the S2 cells are the remnant of a primitive ocellus. In the ganglionic vesicle some cells contain modified cilia and microvillar extensions, which resemble the photoreceptor endings of the photolith. Our results are discussed in the light of two possible scenarios regarding the evolution of the nervous system of protochordates.  相似文献   

8.
An electrophysiological study of interactions between hair cells within the statocyst ofHelix lucorum was undertaken by intracellular and extracellular recording. Analysis of the results led to the following conclusions. First, some hair cells, subtending on angle on the arc of the statocyst sphere of not more than 90°, were electrically connected; electrical synapses, moreover, possessed polar properties; the coefficient of coupling in one direction was about 10 times greater than the other. Second, some connections between hair cells which subtended an angle of not more than 90° were mixed electrochemical in character. The excitatory chemical component in this case was directed in a direction opposite to effective electrical conduction. Third, inhibitory connections were observed between statocyst receptors: monosynaptic chemical (subtending an angle of about 180°, evidently, between the hair cells) and polysynaptic weak inhibitory interactions (subtending an angle in this case of not less than 90–100° between the test neurons). Fourth, all types of connection between hair cells were observed in CNS preparations with the vestibular nerve divided close to the cerebral ganglion. This means that zones of synaptic contacts between these receptors are located not in the CNS, but close to the statocyst.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 230–239, March–April, 1985.  相似文献   

9.
Summary The statocyst ofPecten is composed of hair cells and supporting cells. The hair cells bear kinocilia and microvilli at their distal ends and the supporting cells bear microvilli. The cilia have a 9+2 internal filament content, and arise from basal bodies that have roots, basal feet and microtubular connections. Two different ciliary arrangements are described, one with a small number of cilia arranged in a ring, and another with many more cilia arranged in rows. Below the hair cells are probable synapses. A ciliated duct connects to the lumen of the static sac and passes through the centre of the static nerve. The hair cells in the statocyst ofPterotrachea bear kinocilia and microvilli. The possible importance of cilia and microvilli in the transduction process is discussed.We would like to thank ProfessorJ. Z. Young for bringing specimens ofPterotrachea from Naples and also the staff of the Stazione Zoologica for the provision of specimens, Dr.M. Land for providing specimens ofPecten, the Science Research Council (U.K.) for providing the electron microscope used in much of the study and also for a grant to one of us (V.C.B.), and Mrs.J. Parkers and Mr.R. Moss and Mrs.J. Hamilton for much photographic and technical assistance.  相似文献   

10.
Standard histological and SEM techniques have been used to examine the pair of statocyst organs located in the telson of the isopod, Cyathara polita. Each organ is formed as an invagination of the dorsal cuticle of the telson. The invagination narrows to form a stalk between the statocyst and dorsal surface. A canal courses longitudinally through this stalk and forms a continuous channel between the lumen of the cyst and the external environment. On the luminal floor of each statocyst, there are three pits; each correlates with a nodule protruding from the ventro-medial wall. From each pit, a single, bifurcating hair projects dorsally to contact the single concretion within the statocyst lumen. No other static organs have been found in this animal. Thus, maintenance of equilibrium in this species appears to be under the control of but six hairs, three in each statocyst. Innervation of each statocyst is provided by a branch of a nerve which connects anteriorly with the last abdominal ganglion.  相似文献   

11.
The morphology of the statocyst of the Australian crayfish Cherax destructor was examined using scanning electron microscopy. It resembles in general structure, size, and position the statocysts of crayfish described previously, and the size and distribution of the fields of setae on the floor of the capsule are similar but not the same. Over the size range examined, the relationship between the carapace length, the length of the basal antennular segment, the diameter of the statocyst capsule, and the total number of setae are all linear. The number and position of setae on the floor of the statocyst capsule were mapped for animals in two size classes (small, ca. 20 mm; large, ca. 50 mm) to test for changes in their arrangement during growth. The change in the ratio of setal number to statocyst size between the two size classes was about three times greater for the anterior setal field than for the other fields. We propose that differential development of the setal fields may be related to changes in the force-monitoring requirements of the animals as they increase in size, but this remains to be experimentally tested.  相似文献   

12.
The mechanism of sound reception and the hearing abilities of the prawn (Palaemon serratus) have been studied using a combination of anatomical, electron microscopic and electrophysiological approaches, revealing that P. serratus is responsive to sounds ranging in frequency from 100 to 3000 Hz. It is the first time that the Auditory Brainstem Response (ABR) recording technique has been used on invertebrates, and the acquisition of hearing ability data from the present study adds valuable information to the inclusion of an entire sub-phylum of animals when assessing the potential impact of anthropogenic underwater sounds on marine organisms. Auditory evoked potentials were acquired from P. serratus, using two subcutaneous electrodes positioned in the carapace close to the supraesophageal ganglion and the statocyst (a small gravistatic organ located below the eyestalk on the peduncle of the bilateral antennules). The morphology of the statocyst receptors and the otic nerve pathways to the brain have also been studied, and reveal that P. serratus possesses an array of sensory hairs projecting from the floor of the statocyst into a mass of sand granules embedded in a gelatinous substance. It is the purpose of this work to show that the statocyst is responsive to sounds propagated through water from an air mounted transducer. The fundamental measure of the hearing ability of any organism possessing the appropriate receptor mechanism is its audiogram, which presents the lowest level of sound that the species can hear as a function of frequency. The statocyst of P. serratus is shown here to be sensitive to the motion of water particles displaced by low-frequency sounds ranging from 100 Hz up to 3000 Hz, with a hearing acuity similar to that of a generalist fish. Also, recorded neural waveforms were found to be similar in both amplitude and shape to those acquired from fish and higher vertebrates, when stimulated with low-frequency sound, and complete ablation of the electrophysiological response was achieved by removal of the statocyst.  相似文献   

13.
Summary The cerebral and epidermal ocelli of the Müller's larva and the cerebral and tentacular eyes of the adult turbellarian Pseudoceros canadensis were studied by electron microscopy. The right cerebral ocellus of the larva consists of one cup-shaped pigmented cell and three sensory cells that bear microvilli. The left cerebral eye of the larva has the above named cells plus a sensory cell with many cilia. Evolutionary significance is attributed to the presence of both ciliary and microvillar photoreceptors in an eye of a flatworm. The one epidermal ocellus of the larva is composed of two cells: a cup-shaped pigmented one bearing flattened cilia, the presumed photoreceptors, and a cell above the cup that adds a few nonciliary lamellae to the stack of ciliary ones from the pigmented cell. The adult eyes contain only microvillar receptors; cilia were not observed.  相似文献   

14.
Neurosecretory (Nsy) cells within the cerebral ganglion of Lumbricus terrestris were classified ultrastructurally. The Nsy cells within the subesophageal ganglion, nerve cord ganglion, and the peripheral nervous system were also examined. A comparative survey of Nsy cells of four other species of oligochaetes, Eisenia feotida, octolasion cyaneum, Dendrobeona subrubicunda, and Allolophora longa, was also carried out. Seven cell types (A1, A2, A3, A4, A5, C, and SEF), distinguished by special cytological and ultrastructural features, were found within the cerebral ganglion. Distribution of these cells inside and outside the cerebral ganglion was studied in detail by light and electron microscopy. The nerve terminals of each cell type were followed into the neuropile region. Exocytosis from cell bodies appears to be the main release mechanism for the Nsy granules, whereas small Nsy vesicles are released through synapses in the neuropile. Peripheral fibers of some cell types (A1, A2, and A3) extend through the capsule to the pericapsular epithelium. It is possible that Nsy cells secrete hormones from their cell bodies and peripheral processes and that their centrally directed axons release modulators/transmitters within the neuropile.  相似文献   

15.
Most of the sensory cells found in the chemoreceptor of the ommatophore of Helix pomatia are typical bipolar cells. The chemoreceptor is deveded by a furrow into two parts; within the ventral subdivision the layer of sensory cell bodiesis thicker than in the dorsal part. According to the differentiations of the apical surface of the dendrites, it is possible to distinguish six different classes: a) dendrites with one cilium and 75 nm thick cytofila (sometimes dendrites of identical appearance posses more than one cilium); b)dendrites with several cilial and 150 nm thick cytofila; c) dendrites with several cilia, 50 nm thick cytofila, and long, striated rootlets; d) dendrites with several cilia bur without cytofila; e) dendrites with 130 nm thick cytofila but without cilia; and f) dendrites with 65 nm thick cytofila but without cilia; dendrites of this class are the only ones with a cytoplasm more electron dense than that of the surrounding supporting cells. All these dendrites are connected to the surrounding supporting cells by terminal bars, each consisting of zonula adhaerens, aonula intermedia and zonula septata. The perikarya of the sensory cells measure approximately 15 mum by 8 mum and enclose 10 mum by 6 mum large nuclei. Axons, originating from these perikarya, extend to the branches of the digital ganglion. In the distal part of this gangloin the axons come into synaptic contact with interneurons, but in our electron micrography it was not possible to coordinate processes and synapses with the corresponding neurons.  相似文献   

16.
The presence of an octopamine-stimulated adenylate cyclase is shown in homogenates of the cerebral ganglion of the locust Schistocerca americana gregaria and the synganglion of the tick Boophilus microplus. A detailed study of the pharmacology of the activation of the enzyme of the two species is reported and compared with the pharmacology of octopamine receptors in other invertebrate preparations.  相似文献   

17.
The Neritimorpha is an ancient clade of gastropods that may have acquired larval planktotrophy independently of the evolution of this developmental mode in other gastropods (caenogastropods and heterobranchs). Neritimorphs are therefore centrally important to questions about larval evolution within the Gastropoda, but there is very little information about developmental morphology through metamorphosis for this group. We used immunolabeling (antibodies binding to acetylated α-tubulin and serotonin) and serial ultrathin sections for transmission electron microscopy to characterize the apical sensory organ in planktotrophic larvae of a marine neritimorph. The apical sensory organ of gastropod larvae is a highly conserved multicellular sensory structure that includes an apical ganglion and often an associated ciliary structure. Surprisingly, the apical ganglion of Nerita melanotragus (Smith, 1884) does not have typical ampullary neurons, a type of sensory neuron consisting of a cilia filled inpocketing that has been described in all other major gastropod groups. N. melanotragus has cilia-filled pockets embedded within the apical ganglion, but these so-called “sensory cups” are cassettes of multiple cells: one supporting cell and up to three multiciliated sensory cells. We suggest that an internalized pocket that is filled with cilia and open to the exterior via a narrow pore may be essential architectural features for whatever sensory cues are detected by ampullary neurons and sensory cups; however, morphogenesis of these features at the cellular level has undergone evolutionary change. We also note a correlation between the number of sensory elements consisting of cilia-filled pockets within the larval apical sensory organ of gastropods and morphological complexity of the velum or length of the trochal ciliary bands.  相似文献   

18.
The following conclusions were drawn from an electrophysiological study of statocyst hair cell activity inHelix lucorum using intracellular recording. The maximal input resistance of the receptors is observed with hyperpolarizing currents of not more than 0.1 nA, close in magnitude to that arising during inhibitory synaptic transmission. Background noise, a special type of activity of statocyst hair cells, is neither synaptic nor pacemaker in nature, but depends entirely on the degree of contact between the cilia and statoconia. The hair cells possess pacemaker properties which are manifested on depolarization. The zone of action potential generation of the receptors lies in the axon. Inhibitory interactions take place between hair cells, leading to the generation of IPSPs in their spontaneous activity, which do not disappear after division of the vestibular nerve.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 222–229, March–April, 1985.  相似文献   

19.
Immunoreactivity against the abalone egg-laying hormone (aELH) was detected in the fine granules of type 1 and 2 neurosecretory (NS) cells, neurites in the neuropil, and blood sinuses in the connective tissue sheath of the cerebral, pleuropedal, and visceral ganglia of the tropical abalone, Haliotis asinina Linnaeus. The number of positive NS cells, and the intensity of staining in the ganglia, varied and might be related to the stage of ovarian cycle. At any stage, positive cells were most numerous in the pleuropedal, and least numerous in the visceral ganglion. In addition, several cells of the statocyst and associated nerves also exhibited the immunoreactivity. In the ovary, the most intense reactivity was detected in the follicular and granular cells adjacent to mature oocytes, in the trabeculae and the ovarian capsule. The cytoplasm of mature oocytes was also moderately stained. The results indicate that the cerebral, pleuropedal, and visceral ganglia are the main sites of aELH-producing cells. The ovary may also produce aELH locally.  相似文献   

20.
A novel organ culture system has been developed to study the regulation of statoconia production in the gravity sensing organ in Aplysia californica. Statocysts were cultured in Leibovitz (L15) medium supplemented with salts and Aplysia haemolymph for four days at 17°C. The viability of the system was evaluated by examining four parameters: statocyst morphology, the activity of the mechanosensory cilia in the statocyst, production of new statoconia during culture and change in statoconia volume after culture. There were no morphological differences in statocysts before and after culture when ciliary beating was maintained. There was a 29% increase in the number of statoconia after four days in culture. Mean statocyst, statolith and statoconia volumes were not affected by culture conditions. The presence of carbonic anhydrase in the statocysts was shown using immunohistochemistry. When statocysts were cultured in the presence of 4.0 × 10–4 M acetazolamide to inhibit the enzyme activity, there was a decrease in statoconia production and statoconia volume, indicating a role for this enzyme in statoconia homeostasis, potentially via pH regulation. These studies are the first to report a novel system for the culture of statocysts and show that carbonic anhydrase is involved in the regulation of statoconia volume and production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号