首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fenton A  Lamb T  Graham AL 《Parasitology》2008,135(7):841-853
Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a 'decision' of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.  相似文献   

2.
Among parasitic organisms, inbreeding has been implicated as a potential driver of host–parasite co‐evolution, drug‐resistance evolution and parasite diversification. Yet, fundamental topics about how parasite life histories impact inbreeding remain to be addressed. In particular, there are no direct selfing‐rate estimates for hermaphroditic parasites in nature. Our objectives were to elucidate the mating system of a parasitic flatworm in nature and to understand how aspects of parasite transmission could influence the selfing rates of individual parasites. If there is random mating within hosts, the selfing rates of individual parasites would be an inverse power function of their infection intensities. We tested whether selfing rates deviated from within‐host random mating expectations with the tapeworm Oochoristica javaensis. In doing so, we generated, for the first time in nature, individual selfing‐rate estimates of a hermaphroditic flatworm parasite. There was a mixed‐mating system where tapeworms self‐mated more than expected with random mating. Nevertheless, individual selfing rates still had a significant inverse power relationship to infection intensities. The significance of this finding is that the distribution of parasite infection intensities among hosts, an emergent property of the transmission process, can be a key driver in shaping the primary mating system, and hence the level of inbreeding in the parasite population. Moreover, we demonstrated how potential population selfing rates can be estimated using the predicted relationship of individual selfing rates to intensities and showed how the distribution of parasites among hosts can indirectly influence the primary mating system when there is density‐dependent fecundity.  相似文献   

3.
Theoretical studies predict that parasitic infection may impact host longevity and ultimately modify the trade-off between reproduction and survival. Indeed, a host may adjust its energy allocation in current reproduction to balance the negative effects of parasitism on its survival prospects. However, very few empirical studies tested this prediction. Avian haemosporidian parasites provide an excellent opportunity to assess the influence of parasitic infection on both host survival and reproduction. They are represented by three main genera (Plasmodium, Haemoproteus and Leucocytozoon) and are highly prevalent in many bird populations. Here we provide the first known long-term field study (12?years) to explore the effects of haemosporidian parasite infection and co-infection on fitness in two populations of great tits (Parus major), using a multistate modeling framework. We found that while co-infection decreased survival probability, both infection and co-infection increased reproductive success. This study provides evidence that co-infections can be more virulent than single infections. It also provides support for the life-history theory which predicts that reproductive effort can be adjusted to balance one’s fitness when survival prospects are challenged.  相似文献   

4.
Most studies of virulence of infection focus on pairwise host–parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.  相似文献   

5.
Infections by multiple genotypes are common in nature and are known to select for higher levels of virulence for some parasites. When parasites produce public goods (PGs) within the host, such co-infections have been predicted to select for lower levels of virulence. However, this prediction is based on simplifying assumptions regarding epidemiological feedbacks on the multiplicity of infections (MOI). Here, we analyse the case of parasites producing a PG (for example, siderophore-producing bacteria) using a nested model that ties together within-host and epidemiological processes. We find that the prediction that co-infection should select for less virulent strains for PG-producing parasites is only valid if both parasite transmission and virulence are linear functions of parasite density. If there is a trade-off relationship such that virulence increases more rapidly than transmission, or if virulence also depends on the total amount of PGs produced, then more complex relationships between virulence and the MOI are predicted. Our results reveal that explicitly taking into account the distribution of parasite strains among hosts could help better understand the selective pressures faced by parasites at the population level.  相似文献   

6.
Endemic, low-virulence parasitic infections are common in nature. Such infections may deplete host resources, which in turn could affect the reproduction of other parasites during co-infection. We aimed to determine whether the reproduction, and therefore transmission potential, of an epidemic parasite was limited by energy costs imposed on the host by an endemic infection. Total lipids, triacylglycerols (TAG) and polar lipids were measured in cockroaches (Blattella germanica) that were fed ad libitum, starved or infected with an endemic parasite, Gregarina blattarum. Reproductive output of an epidemic parasite, Steinernema carpocapsae, was then assessed by counting the number of infective stages emerging from these three host groups. We found both starvation and gregarine infection reduced cockroach lipids, mainly through depletion of TAG. Further, both starvation and G. blattarum infection resulted in reduced emergence of nematode transmission stages. This is, to our knowledge, the first study to demonstrate directly that host resource depletion caused by endemic infection could affect epidemic disease transmission. In view of the ubiquity of endemic infections in nature, future studies of epidemic transmission should take greater account of endemic co-infections.  相似文献   

7.
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.  相似文献   

8.
Multiple parasite infections are widespread in the developing world and understanding their geographical distribution is important for spatial targeting of differing intervention packages. We investigated the spatial epidemiology of mono- and co-infection with helminth parasites in East Africa and developed a geostatistical model to predict infection risk. The data used for the analysis were taken from standardised school surveys of Schistosoma mansoni and hookworm (Ancylostoma duodenale/Necator americanus) carried out between 1999 and 2005 in East Africa. Prevalence of mono- and co-infection was modelled using satellite-derived environmental and demographic variables as potential predictors. A Bayesian multi-nominal geostatistical model was developed for each infection category for producing maps of predicted co-infection risk. We show that heterogeneities in co-infection with S. mansoni and hookworm are influenced primarily by the distribution of S. mansoni, rather than the distribution of hookworm, and that temperature, elevation and distance to large water bodies are reliable predictors of the spatial large-scale distribution of co-infection. On the basis of these results, we developed a validated geostatistical model of the distribution of co-infection at a scale that is relevant for planning regional disease control efforts that simultaneously target multiple parasite species.  相似文献   

9.
Understanding the coevolution of hosts and parasites is a long‐standing goal of evolutionary biology. There is a well‐developed theoretical framework to describe the evolution of host–parasite interactions under the assumption of direct, two‐species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host–parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade‐off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three‐species interactions to assess the role of defensive symbionts in host–parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear‐cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont‐conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont‐mediated coevolution between hosts and parasites.  相似文献   

10.
Do male hoots betray parasite loads in Tawny Owls?   总被引:1,自引:0,他引:1  
Bird song structure may honestly reveal the health and vigour of individual males to potential mates and competitors. If this is the case then song may reflect the level of parasitic infections in males. We initially examined the relationship between blood parasite infections and the time taken to respond by 22 male Tawny Owls to a broadcast hoot. We then examined the call structure (total length and frequency) in relation to parasite infection, an index of owl condition and an index of food abundance. Owls with higher parasite loads responded more slowly to an intruder, although this relationship was not significant once condition and vole abundance were controlled for. We found no relationship between call length and any of the measured variables. However, the high frequency and the range of frequencies used in calls decreased with increasing parasite load. Thus, there was the potential for individuals to assess male parasite load from the speed of response and the structure of the call. Experimental tests of these relationships are now required.  相似文献   

11.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

12.
The interaction between multiple parasite strains within different host types may influence the evolutionary trajectories of parasites. In this article, we formulate a deterministic model with two strains of parasites and two host types in order to investigate how heterogeneities in parasite virulence and host life-history may affect the persistence and spread of diseases in natural systems. We compute the reproductive number of strain i (R(i)) independently, as well as the (conditional) "invasion" reproductive number for strains i (R(i)(j), j not equal i) when strain j is at a positive equilibrium. We show that the disease-free equilibrium is locally asymptotically stable if R(i)<1 for both strains and is unstable if R(i)>1 for one stain. We establish the criterion R(i)(j)>1 for strain i to invade strain j. Subthreshold coexistence driven by coinfection is possible even when R(i) of one strain is below 1. We identify conditions that determine the evolution of parasite specialism or generalism based on the life-history strategies employed by hosts, and investigate how host strains may influence parasite persistence.  相似文献   

13.
Parasite strategies of host exploitation may be affected by host defence strategies and multiple infections. In particular, within‐host competition between multiple parasite strains has been shown to select for higher virulence. However, little is known on how multiple infections could affect the coevolution between host recovery and parasite virulence. Here, we extend a coevolutionary model introduced by van Baalen (Proc. R. Soc. B, 265, 1998, 317) to account for superinfection. When the susceptibility to superinfection is low, we recover van Baalen's results and show that there are two potential evolutionary endpoints: one with avirulent parasites and poorly defended hosts, and another one with high virulence and high recovery. However, when the susceptibility to superinfection is above a threshold, the only possible evolutionary outcome is one with high virulence and high investment into defence. We also show that within‐host competition may select for lower host recovery, as a consequence of selection for more virulent strains. We discuss how different parasite and host strategies (superinfection facilitation, competitive exclusion) as well as demographic and environmental parameters, such as host fecundity or various costs of defence, may affect the interplay between multiple infections and host–parasite coevolution. Our model shows the interplay between coevolutionary dynamics and multiple infections may be affected by crucial mechanistic or ecological details.  相似文献   

14.
Within‐host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co‐evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain‐specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics.  相似文献   

15.
Environmentally transmitted parasites spend time in the abiotic environment, where they are subjected to a variety of stressors. Learning how they face this challenge is essential if we are to understand how host–parasite interactions may vary across environmental gradients. We used a zooplankton–bacteria host–parasite system where availability of sunlight (solar radiation) influences disease dynamics to look for evidence of parasite local adaptation to sunlight exposure. We also examined how variation in sunlight tolerance among parasite strains impacted host reproduction. Parasite strains collected from clearer lakes (with greater sunlight penetration) were most tolerant of the negative impacts of sunlight exposure, suggesting local adaptation to sunlight conditions. This adaptation came with both a cost and a benefit for parasites: parasite strains from clearer lakes produced relatively fewer transmission stages (spores) but these strains were more infective. After experimental sunlight exposure, the most sunlight-tolerant parasite strains reduced host fecundity just as much as spores that were never exposed to sunlight. Sunlight availability varies greatly among lakes around the world. Our results suggest that the selective pressure sunlight exposure exerts on parasites may impact both parasite and host fitness, potentially driving variation in disease epidemics and host population dynamics across sunlight availability gradients.  相似文献   

16.
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within‐host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such ‘mixed infections’, which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.  相似文献   

17.
The success of parasitic life lies in an optimal exploitation of the host to satisfy key functions directly involved in reproductive fitness. Resource availability generally decreases over time with host mortality, but also during multiple infections, where different strains of parasite share host resources. During multiple infections, the number of parasite strains and their genetic relatedness are known to influence their reproductive rates. Using infections of the potato plant Solanum tuberosum with the parasite Phytophthora infestans, we set up an experimental design to separate dose effects (double- vs. single-site infections) from genetic relatedness (different vs. identical genotypes) on the reproductive fitness of competing parasite genotypes. We showed the existence of two basic response patterns--increase or decrease in reproductive fitness in multiple infections- depending on the parasite genotype. In all cases, the intensity of the response of any genotype depended on the genotype of the competing strain. This diversity of responses to multiple infections is probably maintained by the fluctuating frequencies of multiple infections in nature, arising from variations in disease pressure over the course of an epidemic and between successive epidemics. It allows a rapid response of parasitic populations to changing environments, which are particularly intense in agricultural systems.  相似文献   

18.
Recurrent self-mating can result in nearly clonal propagation of biological lineages, but even occasional outcrossing can serve to redistribute variation in future generations, providing cohesion among regional populations. The zoonotic parasite Trichinella spiralis has been suspected to undergo frequent inbreeding, resulting in genetically uniform larval cohorts which differ markedly from one another. Here, we explored the extent of inbreeding for this parasite by determining how genetic variation (at variable microsatellite markers) is distributed among 1379 larvae derived from 41 wild boars in Extremadura, Spain. In particular, we sought to determine how much of the genetic variation in this region’s parasites occurs among the larvae of any given wild boar, and whether each derives from one, or more, parental lineages. We found strong evidence for inbreeding, resulting in genetically distinct parasite subpopulations among the parasites derived from many pairs of wild boar. Fully two-thirds of these parasite cohorts appear to derive from inbred parents; in 10% of the wild boars, parasites were so inbred as to become absolutely fixed in all of the assayed genetic loci. In spite of this, more than one pair of parents appear to have given rise to the infections in one-third of the sampled wild boars, resulting in mixed infections. These mixed infections should slow losses of heterozygosity and multi-locus polymorphism in any given parasite lineage. Such outcrossing should limit distinctions that would otherwise accumulate among transmission chains, thereby enforcing cohesion through the region’s population in spite of its marked departure from panmixia. Conditions of transmission may differ in other regions, where such epidemiological features may engender different evolutionary outcomes.  相似文献   

19.
By definition, parasites harm their hosts, but in many infections much of the pathology is driven by the host immune response rather than through direct damage inflicted by parasites. While these immunopathological effects are often well studied and understood mechanistically in individual disease interactions, there remains relatively little understanding of their broader impact on the evolution of parasites and their hosts. Here, we theoretically investigate the implications of immunopathology, broadly defined as additional mortality associated with the host's immune response, on parasite evolution. In particular, we examine how immunopathology acting on different epidemiological traits (namely transmission, virulence and recovery) affects the evolution of disease severity. When immunopathology is costly to parasites, such that it reduces their fitness, for example by decreasing transmission, there is always selection for increased disease severity. However, we highlight a number of host-parasite interactions where the parasite may benefit from immunopathology, and highlight scenarios that may lead to the evolution of slower growing parasites and potentially reduced disease severity. Importantly, we find that conclusions on disease severity are highly dependent on how severity is measured. Finally, we discuss the effect of treatments used to combat disease symptoms caused by immunopathology.  相似文献   

20.
We provide a global analysis of systems of within-host parasitic infections. The systems studied have parallel classes of different length of latently infected target cells. These systems can also be thought as systems arising from within-host parasitic systems with distributed continuous delays. We compute the basic reproduction ratio R0 for the systems under consideration. If R0< or =1 the parasite is cleared, if R0>1 and if a sufficient condition is satisfied we conclude to the global asymptotic stability (GAS) of the endemic equilibrium. For some generic class of models this condition reduces to R0>1. These results make possible to revisit some parasitic models including intracellular delays and to study their global stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号