首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
 Dinucleotide microsatellites were isolated from Pinus radiata using both a standard genomic library and libraries enriched for microsatellites. Locus-specific primers were designed to amplify 43 unique microsatellites. Thirty two of these loci had interpretable PCR patterns, 11 of which were polymorphic in a screen of 19 P. radiata individuals; all 11 polymorphic loci contained at least 17 repeats in the sequenced plasmid. Six of the eleven primer pairs amplified multiple fragments per individual (3–8), suggesting that these loci were present in multiple copies in the genome. Genotyping a 48-tree P. radiata production population with seven of the most polymorphic microsatellites revealed an average of 17 bands per locus (the multi-copy microsatellites were treated as one locus). When tested on known pedigrees, both single and multi-copy microsatellites exhibited co-dominant inheritance and Mendelian segregation. Two loci had null alleles and one locus had a high frequency of non-parental alleles, suggesting a high mutation rate. Eight of these microsatellites, including five multi-copy loci, were placed on a partially constructed P. radiata genetic map. Four of the five multi-copy microsatellites had two or more sets of alleles that mapped to the same locus, and the fifth mapped to two unlinked loci. All seven tested primer pairs amplified PCR products from other species of hard pine, three amplified products from soft-pine species, and one amplified bands in other conifers. Received: 10 November 1997 / Accepted: 5 January 1998  相似文献   

2.
Thirteen sets of polymerase chain reaction (PCR) primers were designed to amplify microsatellite loci identified in the genome sequence of Leishmania major. Polymorphisms were detected in L. major at all loci. In Leishmania donovani only two of these loci were informative for classification purposes with this data set. The PCR products of all loci from one L. donovani strain were sequenced and it was found that the number of repeats in the microsatellite loci were either substantially reduced with respect to L. major or absent altogether. Consequently it is unlikely to be possible to use the genome sequence of L. major to identify polymorphic microsatellite loci in other Leishmania species.  相似文献   

3.
Visceral Leishmaniasis is an endemic disease in Brazil caused by Leishmania infantum chagasi and its main vector species is the sand fly Lutzomyia longipalpis. Epidemiological studies have used conventional PCR techniques to measure the rate of infection of sand flies collected in the field. However, real-time PCR can detect lower parasite burdens, reducing the number of false negatives and improving the quantification of Leishmania parasites in the sand fly. This study compared genes with various copy numbers to detect and quantify L. infantum chagasi in L. longipalpis specimens by real-time PCR. We mixed pools of 1, 10 and 30 male sand flies with various amounts of L. infantum chagasi, forming groups with 50, 500, 5000 and 50,000 Leishmania parasites. For the amplification of L. infantum chagasi DNA, primers targeting kDNA, polymerase α and the 18S ribosome subunit were employed. Parasites were measured by absolute and relative quantification. PCR detection using the amplification of kDNA exhibited the greatest sensitivity among the genes tested, showing the capacity to detect the DNA equivalent of 0.004 parasites. Additionally, the relative quantification using these primers was more accurate and precise. In general, the number of sand flies used for DNA extraction did not influence Leishmania quantification. However, for low-copy targets, such as the polymerase α gene, lower parasite numbers in the sample produced inaccurate quantifications. Thus, qPCR measurement of L. infantum chagasi in L. longipalpis was improved by targeting high copy-number genes; amplification of high copy-number targets increased the sensitivity, accuracy and precision of DNA-based parasite enumeration.  相似文献   

4.
EST derived PCR-based markers for functional gene homologues in cotton.   总被引:7,自引:0,他引:7  
We investigated the utility of the Gossypium arboreum EST sequences in the GenBank database for developing PCR-based markers targeting known-function genes in cultivated tetraploid cottons, G. hirsutum and G. barbadense. Four hundred sixty-five randomly selected ESTs from this library were subjected to BLASTn search against all GenBank databases, of which putative function was assigned to 93 ESTs based on high nucleotide homology to previously studied genes. PCR primers were synthesized for 89 of the known-function ESTs. A total of 57 primer pairs amplified G. arboreum genomic DNA, but only 39 amplified in G. hirsutum and G. barbadense, suggesting that sequence divergence may be a factor causing non-amplification for some sites. DNA sequence analysis showed that most primer pairs were targeting the expected homologous loci. While the amplified products that were of larger size than the corresponding EST sequences contain introns, the primer pairs with a smaller amplicon than predicted from the flanking EST sequences did not amplify the expected orthologous gene sequences. Among the 39 primer pairs that amplified tetraploid cotton DNA, 3 detected amplicon size polymorphisms and 10 detected polymorphisms after digestion with one of six restriction enzymes. Ten of the polymorphic loci were subsequently mapped to an anchor RFLP map. Digestion of PCR-amplified sequences offers one means by which cotton genes can be mapped to their chromosomal locations more quickly and economically than by RFLP analysis.  相似文献   

5.
Random amplified polymorphic DNA (RAPD) markers are used widely to develop high resolution genetic maps and for genome fingerprinting. Typically, single oligomers of approximately 10 nucleotides are used to PCR amplify characteristic RAPD marker fragments. We describe an efficient method for the direct end-sequencing of gel-purified RAPD fragments using one primer from a set of four 3'-terminal extended (A, T, C or G) oligonucleotides, identical to the RAPD primer but for the single nucleotide extension. Strand-specific DNA sequence could be independently read from each of the RAPD fragments without recourse to strand separation or fragment cloning. Informative RAPD fragments could be readily converted into mapped STS or SCAR loci using this technology. The 3'-extended primers may also be used to amplify independent genomic RAPD markers.  相似文献   

6.
A European eel (Anguilla anguilla) expressed sequence tag database consisting of 795 contigs and 4008 singletons was screened for microsatellites sequences. Primers were designed to amplify 96 repeats, of which 86 gave good quality amplification products. Twenty-eight microsatellites were selected for further microsatellite genotyping. Only two loci were found to be monomorphic; out of the 26 polymorphic loci, number of alleles per locus ranged from two to 14, while the observed and expected heterozygosities ranged from 0.05 to 0.93, and from 0.05 to 0.95, respectively. All 28 primer sets tested revealed positive amplification in American eel (Anguilla rostrata).  相似文献   

7.
We constructed nine sets of oligonucleotide primers on the basis of the results of DNA hybridization of cloned genes from Neurospora crassa and Aspergillus nidulans to the genomes of select filamentous ascomycetes and deuteromycetes (with filamentous ascomycete affiliations). Nine sets of primers were designed to amplify segments of DNA that span one or more introns in conserved genes. PCR DNA amplification with the nine primer sets with genomic DNA from ascomycetes, deuteromycetes, basidiomycetes, and plants revealed that five of the primer sets amplified a product only from DNA of the filamentous ascomycetes and deuteromycetes. The five primer sets were constructed from the N. crassa genes for histone 3, histone 4, beta-tubulin, and the plasma membrane ATPase. With these five primer sets, polymorphisms were observed in both the size of and restriction enzyme sites in the amplified products from the filamentous ascomycetes. The primer sets described here may provide useful tools for phylogenetic studies and genome analyses in filamentous ascomycetes and deuteromycetes (with ascomycete affiliations), as well as for the rapid differentiation of fungal species by PCR.  相似文献   

8.
We have isolated and developed 180 new polymorphic chicken microsatellite markers. In addition, primers have been developed for 91 microsatellites derived from the GenBank sequence database (isolated by the laboratory of Terry Burke, Leicester University), of which 89 were polymorphic, and six existing polymorphic markers (HUJ) have been modified. The primer sequences were designed to allow optimal performance of the markers, in sets containing multiple microsatellites, on ABI sequencers. The average number of alleles for the 275 polymorphic markers described was 4·0. Of these markers, 93% were polymorphic in the Wageningen resource population whereas 57% of the markers were polymorphic in the East Lansing reference population and only 44% could be mapped in the Compton reference population. The microsatellite markers described in this paper, in combination with the microsatellite markers published previously, are particularly well suited for performing a total genome scan for the detection of quantitative trait loci (QTL).  相似文献   

9.
We developed a PCR-based high-throughput genome-walking protocol. The novelty of this protocol is in the random introduction of unique walker primer binding sites into different regions of the genome efficiently by taking advantage of the rolling circle mode of DNA synthesis by Phi29 DNA polymerase after annealing the partially degenerate primers to the denatured genomic DNA. The inherent strand-displacement activity of the Phi29 DNA polymerase displaces the 5′ ends of downstream strands and DNA synthesis continues, resulting in a large number of overlapping fragments that cover the whole genome with the unique walker adapter attached to the 5′ end of all the genomic DNA fragments. The directional genome walking can be performed using a locus-specific primer and the walker primer and Phi29 DNA polymerase-amplified genomic DNA fragments as template. The locus-specific primer will determine the position and direction of the genome walk. Two rounds of successive PCR amplifications by locus-specific and walker primers and their corresponding nested primers effectively amplify the flanking DNA fragments. The desired PCR fragment can be either cloned or sequenced directly using another nested, locus-specific primer. We successfully used this protocol to isolate and sequence 5′ flanking regions/promoters of selected plant genes.  相似文献   

10.
Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ~1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120-160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced.  相似文献   

11.
The polymerase chain reaction (PCR) is an attractive technique for many genome mapping and characterization projects. One PCR approach which has been evaluated involves the use of randomly amplified polymorphic DNA (RAPD). An alternative to RAPDs is the sequence-tagged-site (STS) approach, whereby PCR primers are designed from mapped low-copy-number sequences. In this study, we sequenced and designed primers from 22 wheat RFLP clones in addition to testing 15 primer sets that had been previously used to amplify DNA sequences in the barley genome. Our results indicated that most of the primers amplified sequences that mapped to the expected chromosomes in wheat. Additionally, 9 of 16 primer sets tested revealed polymorphisms among 20 hexaploid wheat genotypes when PCR products were digested with restriction enzymes. These results suggest that the STS-based PCR analysis will be useful for generation of informative molecular markers in hexaploid wheat.Contribution no. J-2833 of the Montana Agric Exp Stn  相似文献   

12.
Development and mapping of microsatellite (SSR) markers in wheat   总被引:46,自引:9,他引:37  
Microsatellite DNA markers are consistently found to be more informative than other classes of markers in hexaploid wheat. The objectives of this research were to develop new primers flanking wheat microsatellites and to position the associated loci on the wheat genome map by genetic linkage mapping in the ITMI W7984 × Opata85 recombinant inbred line (RIL) population and/or by physical mapping with cytogenetic stocks. We observed that the efficiency of marker development could be increased in wheat by creating libraries from sheared rather than enzyme-digested DNA fragments for microsatellite screening, by focusing on microsatellites with the [ATT/TAA]n motif, and by adding an untemplated G-C clamp to the 5-end of primers. A total of 540 microsatellite-flanking primer pairs were developed, tested, and annotated from random genomic libraries. Primer pairs and associated loci were assigned identifiers prefixed with BARC (the acronym for the USDA-ARS Beltsville Agricultural Research Center) or Xbarc, respectively. A subset of 315 primer sets was used to map 347 loci. One hundred and twenty-five loci were localized by physical mapping alone. Of the 222 loci mapped with the ITMI population, 126 were also physically mapped. Considering all mapped loci, 126, 125, and 96 mapped to the A, B, and D genomes, respectively. Twenty-three of the new loci were positioned in gaps larger than 10 cM in the map based on pre-existing markers, and 14 mapped to the ends of chromosomes. The length of the linkage map was extended by 80.7 cM. Map positions were consistent for 111 of the 126 loci positioned by both genetic and physical mapping. The majority of the 15 discrepancies between genetic and physical mapping involved chromosome group 5.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
DNA microsatellites have found widespread application in gene mapping, pedigree determination and population genetics. In closely related species such as bovids, heterologous polymerase chain reaction (PCR) primers may in some cases be used, bypassing the need to isolate and characterize microsatellite-containing sequences and design PCR primers. We report on the ability of a set of eighty bovine derived DNA microsatellite primers to amplify sequences in the two types (swamp and river) of water buffalo ( Bubalus bubalis ). Number of alleles and per cent heterozygosities in a large number of animals were determined on a subset of microsatellite loci selected on the robustness of the primers. These loci will form the basis of a set of polymorphic DNA markers for use in water buffalo.  相似文献   

14.
Microsatellites have emerged as an important system of molecular markers. We evaluated the potential of microsatellites for use in genetic studies of peach [Prunus persica (L.) Batsch]. Microsatellite loci in peach were identified by screening a pUC8 genomic library, a λZAPII leaf cDNA library, as well as through database searches. Primer sequences for the microsatellite loci were tested from the related Rosaceae species apple (Malus×domestica) and sour cherry (Prunus cerasus L.). The genomic library was screened for CT, CA and AGG repeats, while the cDNA library was screened for (CT)n- and (CA)n-containing clones. Estimates of microsatellite frequencies were determined from the genomic library screening, and indicate that CT repeats occur every 100 kb, CA repeats every 420 kb, and AGG repeats every 700 kb in the peach genome. Microsatellite- containing clones were sequenced, and specific PCR primers were designed to amplify the microsatellite- containing regions from genomic DNA. The level of microsatellite polymorphism was evaluated among 28 scion peach cultivars which displayed one to four alleles per primer pair. Five microsatellites were found to segregate in intraspecific peach-mapping crosses. In addition, these microsatellite markers were tested for their utility in cross-species amplification for use in comparative mapping both within the Rosaceae, and with the un- related species Arabidopsis thaliana L. Received: 18 June 1999 / Accepted: 6 December 1999  相似文献   

15.
Trenton W J Garner 《Génome》2002,45(1):212-215
Although the frequency of microsatellite DNA regions generally increases with increasing genome size, genome size has a negative effect on polymerase chain reaction (PCR) amplification. Thus, researchers developing sets of PCR primers, as is commonly done for microsatellite DNA regions, may encounter greater difficulty when working with species that have larger genomes. I investigated the effect of genome size on overall amplification success using data from nine different metazoan taxa. The proportion of primer sets that did not amplify PCR products was strongly and positively correlated with the haploid C value of the target species. Increasing genome size may affect amplification success negatively because of a decrease in target:nontarget DNA or by dilution of the available primer pool by nonspecific binding.  相似文献   

16.
The frequency occurrences of K-tuple (overlapping sequences of defined length, K) were computed from the known human genome sequences. The significance of these frequencies for the whole human genome was tested by polymerase chain reaction (PCR). A computer programs based on these results was written to choose primers to amplify DNA target sequences, either of human genes or of human infectious agents. The software also gave nested primer sequences which were used to synthesize non radioactive probes by PCR. We applied these two methods, primer selection and non radioactive probes, to easily and quickly set up very efficient PCR sets to work in the human genome context.  相似文献   

17.
Eight pairs of polymerase chain reaction (PCR) primers that amplify polymorphic microsatellite loci were developed for the African armyworm, Spodoptera exempta (Walker) to be used in the study of its population dynamics in sub‐Sahara Africa where the species is a major pest of cereals and rangeland. A magnetic beads based enrichment protocol was used; it appears that previously reported scarcity of microsatellites in Lepidoptera species does not apply to the African armyworm. All the loci showed significant heterozygote deficit; possibly because the samples were laboratory reared from limited stock. Four primer pairs successfully amplified single fragments of beet and fall armyworm DNA of comparable size to the African armyworm alleles.  相似文献   

18.
As part of the human genome study, large-scale cDNA sequencing has produced thousands of Expressed Sequence Tags (ESTs). Généthon has mapped in human 10,000 of these ESTs and has shown that the primers of about 1000 ESTs could amplify bovine DNA. In this work, we have analyzed 233 primer pairs provided by Genethon, to assign type I sequences to the bovine genome by using a hamster-bovine somatic cell hybrid panel. Among these 233 primer pairs, 109 gave a specific PCR product with bovine genomic DNA, but for 50% the size of the PCR product was the same in cattle and hamster, requiring SSCP analysis. Finally, 60 ESTs were assigned to the bovine genome, and among them 46 were found on the bovine chromosome expected from heterologous painting data between cattle and human. Received: 16 December 1999 / Accepted: 6 May 2000  相似文献   

19.
We are developing a genetic map of the dog based partly upon markers contained within known genes. In order to facilitate the development of these markers, we have used polymerase chain reaction (PCR) primers designed to conserved regions of genes that have been sequenced in at least two species. We have refined the method for designing primers to maximize the number that produce successful amplifications across as many mammalian species as possible. We report the development of primer sets for 11 loci in detail:CFTR, COL10A1, CSFIR, CYP1A1, DCN1, FES, GHR, GLB1, PKLR, PVALB, andRB1. We also report an additional 75 primer sets in the appendices. The PCR products were sequenced to show that the primers amplify the expected canine genes. These primer sets thus define a class of gene-specific sequence-tagged sites (STSs). There are a number of uses for these STSs, including the rapid development of various linkage tools and the rapid testing of genomic and cDNA libraries for the presence of their corresponding genes. Six of the eleven gene targets reported in detail have been proposed to serve as “anchored reference loci” for the development of mammalian genetic maps [O'Brien, S. J.,et al., Nat. Genet. 3:103, 1993]. The primer sets should cover a significant portion of the canine genome for the development of a linkage map. In order to determine how useful these primer sets would be for the other genome projects, we tested the 11 primer sets on the DNA from species representing five mammalian orders. Eighty-four percent of the gene-species combinations amplified successfully. We have named these primer sets “universal mammalian sequence-tagged sites” because they should be useful for many mammalian genome projects.  相似文献   

20.
Cruz P  Buttner MP 《Mycologia》2008,100(5):683-690
Aspergillus flavus is a ubiquitous mold and the most common mold contaminating foodstuffs. Many strains of A. flavus produce aflatoxins. In addition it is an allergen and an opportunistic pathogen of animals and plants. A. flavus often is underestimated in traditional culture analyses due to the expertise required and the cost associated with speciating members of the genus Aspergillus. The goal of this study was to develop and validate a primer and probe set for the rapid detection and quantitation of A. flavus in pure culture using real-time quantitative polymerase chain reaction (QPCR) amplification. Unique DNA regions were located in the genome of the target organism by sequence comparison with the GenBank database, and several candidate oligonucleotides were identified from the scientific literature for potential use with the TaqMan QPCR technology. Three primer and probe sets were designed and validated for specificity and sensitivity in laboratory experiments. Initial screening to test for sensitivity was performed with seven A. flavus isolates and selected nontarget fungi. Specificity testing was conducted with the selected primer and probe set, which amplified all nine A. flavus isolates tested, including an aflatoxin producing strain. The primers did not amplify DNA extracted from 39 other fungal species (comprising 16 genera), including 18 other Aspergillus species and six Penicillium species. No amplification of human or bacterial DNA was observed; however cross-reactivity was observed with Aspergillus oryzae. PCR analysis of DNA dilutions and the use of an internal positive control demonstrated that 67% of the fungal DNA samples assayed contained PCR inhibitors. The assay validated for the target organism is capable of producing PCR results in less than 1 h after DNA extraction. The results of this research demonstrate the capabilities of QPCR for the enhanced detection and enumeration of fungi of significance to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号