首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is a part of a directional search for new crystal donors of nitric oxide (NO), which are promising for complex chemotherapy. The relationships between the physico-chemical properties of NO donors, their genotoxic and mutagenic activities, and the dependence on intracellular iron were studied. New crystal NO donors (di- and trinitrosyl iron complexes with synthetic ligands) were examined for the first time and compared with known NO donors containing natural ligands. All but one compound induced expression of the Escherichia coli sfiA gene belonging to the SOS regulon and exerted a mutagenic effect on Salmonella typhimurium TA1535. These effects were fully or significantly inhibited by the iron(II)-chelating agent o-phenanthrolin, depending on the mono- or binuclear structure of the ligands. The rate of donating free NO in solution did not positively correlate with the genotoxic activity of the crystal NO donors. The genetic activity of all NO donors proved to depend on intracellular iron.  相似文献   

2.
Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.  相似文献   

3.
The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants ΔiscA and ΔsufA, and the double paralog mutant ΔiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CF. Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.  相似文献   

4.
It is hypothesized that in cells producing nitric oxide (NO), NO and its endogenous derivatives (low-molecular S-nitrosothiols and dinitrosyl iron complexes (DNIC) with thiol-containing ligands) can move in the intracellular space not only by diffusion but also in an autowave mode. This hypothesis is based on the previously obtained data on autowave distribution of DNIC with glutathione following application of a drop of a solution of Fe2+ + glutathione onto the surface of a thin layer of a S-nitrosoglutathione solution. The appearance of autowaves is conditioned by a self-regulating self-sustained system arising in the process. This system consists of self-convertible DNIC and S-nitrosothiols as well as free ferrous iron ions, thiols and NO and can function in the autowave regime for several seconds with subsequent passage to a steady state maintained by chemical equilibrium between DNIC and their constituent components (free Fe2+ ions, thiols, S-nitrosothiols and NO). Possible advantages of autowave distribution of NO and its endogenous derivatives in the intracellular space over free diffusion, which might entail higher efficiency of their biological action, are discussed.  相似文献   

5.
Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron.  相似文献   

6.
The effect of iron nitrosyl complexes, NO donors, of a general formula [Fe2(L)2(NO)4] with functional sulfur-containing ligands (L-3-nitro-phenol-2-yl, 4-nitro-phenol-2-yl, or 1-methyl-tetrazol-5-yl) on the activity of sarcoplasmic reticulum Ca2+-ATPase and cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) was studied. The test complexes uncoupled the hydrolytic and transport functions of Ca2+- ATPase, thus disturbing the balance of Ca2+ ions in cells, which may affect the formation of thrombi and adhesion of metastatic cells to the endothelium of capillaries. They also inhibited the activity of cGMP PDE, thereby contributing to the accumulation of the second messenger cGMP. The studied iron nitrosyl complexes can be considered as potential drugs.  相似文献   

7.
The effect of synthetic analogues of dinitrosyl mononuclear iron complexes (DNICs) with functional sulfur-containing ligands (NO donors) on the activity of myeloperoxidase (MPO) was studied, and their efficiency was evaluated. It was shown that the enzyme MPO is the molecular target of DNICs. It was found that six DNICs inhibited the activity of MPO and one compound potentiated it. The evaluation of their efficiency showed that two DNICs effectively inhibited the activity of MPO by 50% at IC50 = 2 × 10–4 M and IC50 = 5 × 10–7 M.  相似文献   

8.
Nitrogen oxides (NOx) are formed in combustion processes and are major pollutants in urban air. Relatively few studies on the genotoxicity of NO2 and NO have been performed. These studies indicate that NO2 is genotoxic in vitro, but the effect of NO seems to be very slight.One in vivo study showed chromosome aberrations and mutations in lung cells after inhalation of NO2 (and NO), but tests for chromosome aberrations in lymphocytes and spermatocytes or micronuclei in bone marrow were negative after inhalation of NO2. Based on present studies, there is no clear evidence of a carcinogenic potential of NO2, although lung adenomas were induced in the susceptible strain A/J mouse.The primary metabolites of NOx are nitrite and nitrate. Nitrate seems to be devoid of genotoxic properties, but nitrite is genotoxic in vitro, and there are also positive in vivo results. Cancer studies have been mainly negative. However, carcinogenic nitrosamines have been shown to be formed in vivo after inhalation of NO2.Nitrogen oxides are key components in atomospheric smog formation, which may lead to secondary effects. Strongly mutagenic nitro-PAH compounds are easily formed, and mutagenic reaction products may be formed photochemically from alkenes.  相似文献   

9.
Iron complexes of two ligands, HphoxCOOH and HphoxiPr, have been synthesized and characterized by crystal structure analyses. The complexes (HNEt3)2[Fe(phoxCOO)2](ClO4) and [Fe(phoxiPr)3] are reported. Reactions of the ligands rac-HphoxCOOH and rac-HphoxiPr with iron(II) or iron(III) perchlorate result in the formation of iron(III) complexes with pseudo-octahedral geometry around the metal center. The iron complex obtained from rac-HphoxCOOH crystallized in the centrosymmetric space group Cmca. The two ligands are bound in a tridentate manner generating a meridional coordination with both dianionic ligands on a metal center having the same chirality; due to the center of symmetry the complex with opposite chirality is also present. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) is the first accurate structural model of the iron complex of a siderophore analog commonly observed in mycobactins. The three didentate ligands in the complex [Fe(phoxiPr)3] are bound with like atoms in a meridional manner to the metal center. The metal ion is surrounded by two ligands of the same chirality and one ligand of opposite chirality (ie. RRS or SSR); due to the presence of a center of symmetry both isomers are present in the crystal structure. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) shows promising activity in the oxidation of alkanes, such as toluene, ethylbenzene and cumene, while the complex [Fe(phoxiPr)3] does not show any catalytic activity in alkane oxidations under the conditions tested. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) is reasonably efficient in the conversion of H2O2 to oxidation products.  相似文献   

10.
Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.  相似文献   

11.
The plasma factor XIII (FXIII) is a transglutaminase which catalyzes the cross-linking of fibrin monomers during blood coagulation. S-nitrosylation of protein sulfhydryl groups has been shown to regulate protein function. Therefore, to establish whether nitric oxide (NO) affects the enzymatic activity of FXIII, we studied the effect of the NO-donorS-nitroso-N-acetylpenicillamine (SNAP) in a blood coagulation testin vitro. High concentrations of SNAP were found to have inhibitory effects on clot formation. Moreover, specific formation of γ-dimers through the action of FXIII is selectively inhibited by high concentrations of SNAP, as revealed by Western blot. Purified activated FXIII and plasma preparations were then exposed to NO-donor compounds and the enzyme activity was assayed by measuring the incorporation of [3H] putrescine into dimethylcasein. The NO donors, SNAP, spermine-NO (SPER-NO) and 3-morpholinosydnonimine (SIN-1), and the NO-carrier, S-nitrosoglutathione (GSNO), inhibited FXIII activity in a dose-dependent manner, in both purified enzyme and plasma preparations. Titration of -SH groups of FXIII with [14C] iodoacetamide has shown that the number of titratable cysteines per monomer of FXIII decreased from 1 (in absence of NO donors) to 0 (in the presence of NO donors). These results demonstrate that blood coagulation FXIII is a target for NO bothin vitroandin vivo,and that inhibition occurs by S-nitrosylation of a highly reactive cysteine residue. In conclusion, we show that inhibition of FXIII activity by NO may represent an additional regulatory mechanism for the formation of blood clot with physio-pathological implications.  相似文献   

12.
Exogenous dinitrosyl iron complexes (DNIC) with thiolate ligands as NO and NO+ donors are capable of exerting both regulatory and cytotoxic effects on diverse biological processes similarly to those characteristic of endogenous nitric oxide. Regulatory activity of DNIC (vasodilatory, hypotensive, suppressing thrombosis, increasing erythrocyte elasticity, accelerating skin wound healing, inducing penile erection, etc.) is determined by their capacity of NO and NO+ transfer to biological targets of the latter (heme- and thiol-containing proteins, respectively) due to higher affinity of the proteins for NO and NO+ than that of DNIC. Cytotoxic activity of DNIC is provided by rapid DNIC decomposition under action of iron-chelating compounds, resulting in appearance of NO and NO+ in cells and tissues in high amounts. The latter mechanism is suggested to cause the blocking effect of DNIC as cytotoxic effectors on the development of benign endometrial tumors in rats with experimental endometriosis. It is also proposed that a similar mechanism can operate to cause at least a delay of malignant tumor proliferation under action of DNIC.  相似文献   

13.
Some present-day concepts on the origin and functional activities of dinitrosyl iron complexes (DNIC) with thiolate ligands are considered. Nitric oxide (NO) including to DNIC increases its stability and ensures effective targeting of NO to organs and tissues. DNIC have a square–planar structure; unpaired electron is localized on the dz2 orbital of the d7 iron atom. The formula of DNIC appears as {(RS?)2Fe+(NO+)2….(?SR)2}?; electron spin is S = 1/2. Conversion of an originally diamagnetic group, Fe2+(NO)2 with electron configuration d8, into a paramagnetic Fe+(NO+)2 group is a result of disproportionation of NO ligands and substitution of newly generated NO? for NO. The nitrosonium ions present in DNIC impart to them high nitrosylating activity, e.g., ability to induce S-nitrosylation of thiols. The ability of S-nitrosothiols to form DNIC in a direct reaction with bivalent iron is a prerequisite to effective mutual conversions of DNIC and S-nitrosothiols. In this work, I consider some mechanisms of destructive effects of low-molecular DNIC on active centers of iron–sulfur proteins, ability of DNIC to express certain genes, to activate guanylate cyclase, to exert hypotensive, vasodilator effects, to inhibit platelet aggregation, to accelerate wound healing and to produce potent erective action. Recently a stabilized powder-like polymeric composition based on dimeric glutathione DNIC the water-soluble polymer in which was used as a filling agent was designed. The advantages of this stable DNIC-glutathione preparation include their ability to retain their physico-chemical and functional activities within at least one year. At present, the preparation undergo testing as a base for the design of a wide variety of broad-spectrum drugs.  相似文献   

14.
We determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4 pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca2+ chelator, a Ca2+ channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (PN) of PC and wild-type (WT), especially that of PC. Treatment with an NO scavenger did inhibit the PN of rice plants. The treatments with phospholipase inhibitors and a Ca2+ chelator decreased the PN of WT and PC, and photosynthesis was more strongly inhibited in WT than in PC. Further analyses showed that the NO donors increased endogenous levels of NO and PLD activity, but decreased endogenous levels of Ca2+ both WT and PC. However, there was a greater increase in NO in WT and a greater increase in PLD activity and Ca2+ level in PC. The NO donors also increased both PEPC activity and pepc gene expression in PC. PEPC activity can be increased by SNP alone. But the expression of its encoding gene in PC might be regulated by SNP, together with PA and Ca2+.  相似文献   

15.
We have carried out an X-ray Absorption Spectroscopy (XAS) study of ferric, ferrous, CO- and NO-bound Haemophilus ducreyi Cu,ZnSOD (HdSOD) in solution to investigate the structural modifications induced by the binding of small gaseous ligands to heme in this enzyme. The combined analysis of EXAFS and XANES data has allowed us to characterize the local structure around the Fe-heme with 0.02 Å accuracy, revealing a heterogeneity in the distances between iron and the two histidine ligands which was not evident in the X-ray crystal structure. In addition, we have shown that the metal oxidation state does not influence the Fe-heme coordination environment, whereas the presence of the CO and NO ligands induces local structural rearrangements in the enzyme which are very similar to those already observed in other hexa-coordinated heme proteins, such as neuroglobin.  相似文献   

16.
We proposed to evaluate the genotoxicity and mutagenicity of a new quantum dots (QDs) nanoplatform (QDsN), consisting of CdSe/ZnS core–shell QDs encapsulated by a natural fusogenic lipid (1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC)) and functionalized by a nucleolipid N-[5′-(2′,3′-di-oleoyl) uridine]-N′,N′,N′-trimethylammoniumtosylate (DOTAU). This QDs nanoplatform may represent a new therapeutic tool for the diagnosis and treatment of human cancers. The genotoxic, mutagenic and clastogenic effects of QDsN were compared to those of cadmium chloride (CdCl2). Three assays were used: (1) the Salmonella/microsome assay with four tester strains, (2) the comet assay and (3) the micronucleus test on CHO cells. The contribution of simulated sunlight was studied in the three assays while oxidative events were only explored in the comet assay in aliquots pretreated with the antioxidant l-ergothioneine. We found that QDsN could enter CHO-K1 cells and accumulate in cytoplasmic vesicles. It was not mutagenic in the Salmonella/mutagenicity test whereas CdCl2 was weakly positive. In the dark, both the QDsN and CdCl2 similarly induced dose-dependent increases in single-strand breaks and micronuclei. Exposure to simulated sunlight significantly potentiated the genotoxic activities of both QDsN and CdCl2, but did not significantly increase micronucleus frequencies. l-Ergothioneine significantly reduced but did not completely suppress the DNA-damaging activity of QDsN and CdCl2. The present results clearly point to the genotoxic properties and the risk of long-term adverse effects of such a nanoplatform if used for human anticancer therapy and diagnosis in the future.  相似文献   

17.
To provide further background data for the somatic mutation and/or recombination tests in Drosophila melanogaster, we have evaluated the responses in 3 assyas (zeste-white, white-ivory and wing spot) of 5 chemicals classified by the U.S. National Toxicology Program (NTP) as genotoxic non-carcinogens (or ambiguous). The selected compounds were 2-chloromethylpyridine, 1-nitronaphthalene, 4-nitro-o-phenylenediamine, 3-nitropropionic acid and p-phenylenediamine. Our results show that all the compounds tested produce significant increases in the frequency of mutant clones, in at least one of the assays, p-phenylenediamine being the compound which present a clearer mutagenic activity, and the wing spot test, the assay the detects more genotoxic compounds (4/5).  相似文献   

18.
《Inorganica chimica acta》1986,117(2):151-155
The matrix isolated binary nitrosyls, Fe(NO)x, x ⩽ 4, formed upon co-condensation of iron with nitric oxide have been studied by infrared and Mössbauer spectroscopies. Infrared data suggest that the unsaturated complexes (x = 1, 2) contain linear NO ligands. The isomer shifts of all four complexes are consistent with covalently bonded Fe(0). In 100% NO, Fe(NO)4 is the major product and gives the identical Mössbauer spectrum as Fe(NO)4 made from the high pressure reaction of Fe(CO)5 with NO. In addition, a second product, probably Fe(NO)3 is detected in the Mössbauer spectmm of Fe(NO)4 made by both procedures. Evidence is seen for a partially reversible temperature dependent equilibrium between Fe(NO)3 and Fe(NO)4, with Fe(NO)4 favored at low temperatures. The unusal reactivity of NO with iron atoms is discussed.  相似文献   

19.
The genotoxicity of river water and sediment including interstitial water was evaluated by microscreen phage-induction and Salmonella/microsome assays. Different processes used to fractionate the sediment sample were compared using solvents with different polarities. The results obtained for mutagenic activity using the Salmonella/microsome test were negative in the water and interstitial water samples analysed using the direct concentration method. The responses in the microscreen phage-induction assay showed the presence of genotoxic or indicative genotoxic activity for at least one water sample of each site analysed using the same concentration method. Similar results were obtained for interstitial water samples, i.e. absence of mutagenic activity in the Salmonella/microsome test and presence of genotoxic activity in the microscreen phage-induction assay. Metal contamination, as evidenced by the concentrations in stream sediments, may also help explain some of these genotoxic results. Stream sediment organic extracts showed frameshift mutagenic activity in the ether extract detected by Salmonella/microsome assay. The concentrates evaluated by microscreen phage-induction assay identified the action of organic compounds in the non-polar, medium polar and polar fractions. Thus, the microscreen phage-induction assay has proven to be a more appropriate methodology than the Salmonella/microsome test to analyse multiple pollutants in this ecosystem where both organic compounds and heavy metals are present.  相似文献   

20.
Chios mastic oil (CMO), the essential oil derived from Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. In the present study, the potential genotoxic activity of CMO as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC) were evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the in vitro experiments, lymphocytes were treated with 0.01, 0.05 and 0.10% (v/v) of CMO with or without 0.05 μg/ml MMC, while in the in vivo assay Drosophila larvae were fed with 0.05, 0.10, 0.50 and 1.00% (v/v) of CMO with or without 2.50 μg/ml MMC. CMO did not significantly increase the frequency of micronuclei (MN) or total wing spots, indicating lack of mutagenic or recombinogenic activity. However, the in vitro analysis suggested cytotoxic activity of CMO. The simultaneous administration of MMC with CMO did not alter considerably the frequencies of MMC-induced MN and wing spots showing that CMO doesn’t exert antigenotoxic or antirecombinogenic action. Therefore, CMO could be considered as a safe product in terms of genotoxic potential. Even though it could not afford any protection against DNA damage, at least under our experimental conditions, its cytotoxic potential could be of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号