首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jerga A  Stanley MD  Tipton PA 《Biochemistry》2006,45(30):9138-9144
C5-mannuronan epimerase catalyzes the formation of alpha-L-guluronate residues from beta-D-mannuronate residues in the synthesis of the linear polysaccharide alginate. The reaction requires the abstraction of a proton from C5 of the residue undergoing epimerization followed by re-protonation on the opposite face. Rapid-mixing chemical quench experiments were conducted to determine the nature of the intermediate formed upon proton abstraction in the reaction catalyzed by the enzyme from Pseudomonas aeruginosa. Colorimetric and HPLC analysis of quenched samples indicated that shortened oligosaccharides containing an unsaturated sugar residue form as transient intermediates in the epimerization reaction. This suggests that the carbanion is stabilized by glycal formation, concomitant with cleavage of the glycosidic bond between the residue undergoing epimerization and the adjacent residue. The time dependence of glycal formation suggested that slow steps flank the chemical steps in the catalytic cycle. Solvent isotope effects on V and V/K were unity, consistent with a catalytic cycle in which chemistry is not rate-limiting. The specificity of the epimerase with regard to neighboring residues was examined, and it was determined that the enzyme showed no bias for mannuronate residues adjacent to guluronates versus those adjacent to mannuronates. Proton abstraction and sugar epimerization were irreversible. Existing guluronate residues already present in the polysaccharide were not converted to mannuronates, nor was incorporation of solvent deuterium into existing mannuronates observed.  相似文献   

2.
Alginate biosynthesis involves C-5-mannuronan epimerases catalyzing the conversion of beta-D-mannuronic acid to alpha-L-guluronic acid at the polymer level. Mannuronan epimerases are modular enzymes where the various modules yield specific sequential patterns of the converted residues in their polymer products. Here, the interaction between the AlgE4 epimerase and mannuronan is determined by dynamic force spectroscopy. The specific unbinding between molecular pairs of mannuronan and AlgE4 as well as its two modules, A and R, respectively, was studied as a function of force loading rate. The mean protein-mannuronan unbinding forces were determined to be in the range 73-144 pN, depending on the protein, at a loading rate of 0.6 nN/s, and increased with increasing loading rate. The position of the activation barrier was determined to be 0.23 +/- 0.04 nm for the AlgE4 and 0.10 +/- 0.02 nm for its A-module. The lack of interaction observed between the R-module and mannuronan suggest that the A-module contains the binding site for the polymer substrate. The ratio between the epimerase-mannuronan dissociation rate and the catalytic rate for epimerization of single hexose residues suggests a processive mode of action of the AlgE4 epimerase yielding the observed sequence pattern in the uronan associated with the A-module of this enzyme.  相似文献   

3.
The synthetic nonapeptide Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val is a substrate for in vitro phosphorylation by a partially purified preparation of rat brain protein kinase C, with Kmapp of about 130 microM. The closely related peptide kemptide was a much weaker substrate, bovine serum albumin was not a substrate and the peptide Arg-Arg-Lys-Ala-Ala-Gly-Pro-Pro-Val was a weak inhibitor of the enzyme. Protein kinase C-catalyzed phosphorylation of histone III-S and the nonapeptide are regulated by identical mechanisms since with both substrates the reaction required added phospholipid and either Ca2+ (1mM) or TPA (200 nM TPA). Our findings show that polypeptides containing multiple basic residues followed by the sequence Ala-Ser can be substrates for TPA-stimulated phosphorylation by protein kinase C.  相似文献   

4.
Recently, the overproduction of Mycobacterium tuberculosis diaminopimelic acid (DAP) epimerase MtDapF in Escherichia coli using a novel codon alteration cloning strategy and the characterization of the purified enzyme was reported. In the present study, the effect of sulphydryl alkylating agents on the in vitro activity of M. tuberculosis DapF was tested. The complete inhibition of the enzyme by 2-nitro-5-thiocyanatobenzoate, 5,5'-dithio-bis(2-nitrobenzoic acid) and 1,2-benzisothiazolidine-3-one at nanomolar concentrations suggested that these sulphydryl alkylating agents modify functionally significant cysteine residues at or near the active site of the epimerase. Consequently, the authors extended the characterization of MtDapF by studying the role of the two strictly conserved cysteine residues. The putative catalytic residues Cys87 and Cys226 of MtDapF were replaced individually with both serine and alanine. Residual epimerase activity was detected for both the serine replacement mutants C87S and C226S in vitro. Kinetic analyses revealed that, despite a decrease in the K(M) value of the C87S mutant for DAP that presumably indicates an increase in nonproductive substrate binding, the catalytic efficiency of both serine substitution mutants was severely compromised. When either C87 or C226 were substituted with alanine, epimerase activity was not detected emphasizing the importance of both of these cysteine residues in catalysis.  相似文献   

5.
An Azotobacter vinelandii mannuronan C-5-epimerase gene was cloned in Escherichia coli. This enzyme catalyzes the Ca(2+)-dependent epimerization of D-mannuronic acid residues in alginate to the corresponding epimer L-guluronic acid. The epimerase gene was identified by screening a bacteriophage EMBL3 gene library of A. vinelandii DNA with a synthetic oligonucleotide probe. The sequence of this probe was deduced after determination of the N-terminal amino acid sequence of a previously reported extracellular mannuronan C-5-epimerase from A. vinelandii. A DNA fragment hybridizing against the probe was subcloned in a plasmid vector in E. coli, and the corresponding recombinant plasmid expressed intracellular mannuronan C-5-epimerase in this host. The nucleotide sequence of the gene encoding the epimerase was determined, and the sequence data showed that the molecular mass of the deduced protein is 103 kDa. A module consisting of about 150 amino acids was repeated tandemly four times in the C-terminal part of the deduced protein. Each of the four repeats contained four to six tandemly oriented nonameric repeats. The sequences in these motifs are similar to the Ca(2+)-binding domains of functionally unrelated secreted proteins reported previously in other bacteria. The reaction product of the recombinant epimerase was analyzed by nuclear magnetic resonance spectroscopy, and the results showed that the guluronic acid residues were distributed in blocks along the polysaccharide chain. Such a nonrandom distribution pattern, which is important for the commercial use of alginate, has previously also been identified in the reaction product of the corresponding enzyme isolated from A. vinelandii.  相似文献   

6.
New assay for uronosyl 5-epimerases   总被引:1,自引:0,他引:1  
Simple assays have been developed for the two uronosyl 5-epimerases which participate in the biosynthesis of heparin and dermatan sulfate (heparosan N-sulfate D-glucuronosyl 5-epimerase and chondroitin D-glucuronosyl 5-epimerase, respectively). Following previously published procedures, substrates labeled with tritium in the C-5 positions of the D-glucuronosyl and L-iduronosyl residues were prepared enzymatically by incubation of O-desulfated heparin and dermatan with 3H2O and crude epimerase preparations from bovine liver and human skin fibroblasts, respectively. In the new assays, 3H2O generated from these substrates during the epimerase reactions was quantitated by the method of Pollard et al. (Anal. Biochem. (1981) 110, 424-430). In this procedure, 3H2O in the aqueous reaction mixture is extracted into a toluene-based organic phase containing 25% isoamyl alcohol, while the polysaccharide substrate remains in the aqueous phase and does not generate scintillations. This procedure is much simpler than that used previously which involves distillation of each reaction mixture and quantitation of the radioactivity in the distillate. The new assays have been validated by the demonstration that conditions of linearity with time and enzyme concentration can be established for both epimerase reactions. Assays of this type should be useful in the study of any enzymatic reaction where 3H2O is formed from a 3H-labeled substrate and the unreacted substrate is not appreciably soluble in the organic phase.  相似文献   

7.
During biosynthesis of dermatan sulphate D-glucuronate (GlcA) residues are converted to L-iduronate (IdoA) residues via the reaction [Formula: see text]. The reaction occurs on the polymer level and is catalysed by a C-5 uronosyl epimerase. The reversible release of the C-5 hydrogen was utilized as a measure of the enzyme activity with 5-3H-labelled chondroitin as a substrate. 3H released during incubation was distilled and quantified by liquid-scintillation counting. The epimerase has a low pH optimum (5.6) and requires divalent cations, Mn2+ being the most efficient for activity. The Km for chondroitin is 1.2 x 10(-4) M. The epimerase is largely associated with the microsomal fractions (90%). Two-thirds of the activity can be solubilized by detergents. Microsomes from cultured fibroblasts contain two different uronosyl epimerases, one for the biosynthesis of heparan sulphate and one for that of dermatan sulphate. The two epimerases have different cofactor and pH requirements.  相似文献   

8.
Diethyl pyrocarbonate was used to modify histidyl residues on the sarcoplasmic reticulum ATPase. Difference spectra of the N-carbethoxyhistidyl derivative indicated that most all the histidyl residues on the enzyme had been modified. These residues could be divided into two populations on the basis of their reaction rate with the reagent. It could then be shown that enzyme inhibition followed modification of the slower reacting population. Reversal with hydroxylamine verified that the loss of activity was due specifically to histidyl modification. Using [32P]ATP as a substrate it was further determined that the modified ATPase could form a phosphoenzyme intermediate, but that the hydrolysis of this intermediate was inhibited. Size exclusion chromatography was used to obtain equilibrium binding curves for high affinity Ca2+ sites on the enzyme. With the normal ATPase a cooperative binding curve for two Ca2+ with a Hill coefficient of 1.8 was observed. With the modified ATPase binding to two independent sites was observed; however, the dissociation constants remained the same as in the cooperative mechanism (K1 = 14 microM; K2 = 0.5 microM). That is, modification had eliminated cooperativity without changing the site specific binding affinities. E-P formation was then shown to follow binding to the higher affinity of the two sites. This would be the second site to bind Ca2+ in a sequential, cooperative mechanism. A model is suggested in which the binding of Ca2+ to an initial site allows for the binding of a second Ca2+ to an occluded site, this second site being responsible for enzyme activation. Modification apparently allows the binding properties of both sites to be observed independently.  相似文献   

9.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A soluble protein kinase from the promastigote form of the parasitic protozoon Leishmania donovani was partially purified using DEAE-cellulose, Sephadex G-200 and phosphocellulose columns. The enzyme preferentially utilized protamine as exogenous phosphate acceptor. The native molecular mass of the enzyme was about 85 kDa. Mg2+ ions were essential for enzyme activity; other metal ions, e.g. Ca2+, Co2+, Zn2+ and Mn2+, could not substitute for Mg2+. cAMP, cGMP, Ca2+/calmodulin and Ca2+/phospholipid did not stimulate enzyme activity. The pH optimum of the enzyme was 7.0-7.5, and the temperature optimum 37 degrees C. The apparent Km for ATP was 60 microM. Phosphoamino acid analysis revealed that the protein kinase transferred the gamma-phosphate of ATP to serine residues in protamine. The thiol reagents p-hydroxymercuribenzoic acid, 5-5'-dithio-bis(2-nitrobenzoic acid) and N-ethylmaleimide inhibited enzyme activity; the inhibition by p-hydroxymercuribenzoic acid and 5-5'-dithio-bis(2-nitrobenzoic acid) was reversed by dithiothreitol.  相似文献   

11.
M Ito  T Tanaka  M Inagaki  K Nakanishi  H Hidaka 《Biochemistry》1986,25(15):4179-4184
Naphthalenesulfonamide derivatives were used to study the mechanism of regulation of Ca2+-dependent smooth muscle myosin light chain phosphorylation catalyzed by Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) and myosin light chain kinase. Derivatives such as N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide (SC-9), with a hydrophobic residue at the end of a hydrocarbon chain, stimulated Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation in a Ca2+-dependent fashion. There was no significant effect of these compounds on Ca2+-calmodulin (CaM) dependent myosin light chain phosphorylation. On the other hand, derivatives with the guanidino or amino residue at the same position had an inhibitory effect on both Ca2+-phospholipid- and Ca2+-CaM-dependent myosin light chain phosphorylation. These observations suggest that activation of Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation by naphthalenesulfonamide derivatives depends on the chemical structure at the end of hydrocarbon chain of each compound. SC-9 was similar to phosphatidylserine with regard to activation, and the apparent Km values for Ca2+ of the enzyme with this compound and phosphatidylserine were 40 microM and 80 microM, respectively. Kinetic analysis indicated that 12-O-tetradecanoylphorbol 13-acetate increased the affinity of the enzyme with SC-9 for calcium ion. However, kinetic constants revealed that the Km value of protein kinase C activated by SC-9 for substrate myosin light chain was 5.8 microM, that is, about 10 times lower than that of the enzyme with phosphatidylserine, and that the Vmax value with SC-9 was 0.13 nmol X min-1, that is, 3-fold smaller than that seen with phosphatidylserine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The essential tRNA-specific adenosine deaminase catalyzes the deamination of adenosine to inosine at the wobble position of tRNAs. This modification allows for a single tRNA species to recognize multiple synonymous codons containing A, C, or U in the last (3'-most) position and ensures that all sense codons are appropriately decoded. We report the first combined structural and kinetic characterization of a wobble-specific deaminase. The structure of the Escherichia coli enzyme clearly defines the dimer interface and the coordination of the catalytically essential zinc ion. The structure also identifies the nucleophilic water and highlights residues near the catalytic zinc likely to be involved in recognition and catalysis of polymeric RNA substrates. A minimal 19 nucleotide RNA stem substrate has permitted the first steady-state kinetic characterization of this enzyme (k(cat) = 13 +/- 1 min(-)(1) and K(M) = 0.83 +/- 0.22 microM). A continuous coupled assay was developed to follow the reaction at high concentrations of polynucleotide substrates (>10 microM). This work begins to define the chemical and structural determinants responsible for catalysis and substrate recognition and lays the foundation for detailed mechanistic analysis of this essential enzyme.  相似文献   

13.
Protein kinase C of rabbit iris smooth muscle was purified by the sequential use of three chromatographic steps, i.e. anion-exchange (DEAE-cellulose), gel filtration (Sephadex G-150) and substrate affinity (protamine-agarose), and its properties were investigated by using as substrate myosin light-chain protein (MLC) isolated from the same tissue. The enzyme appeared as a single band on SDS/polyacrylamide-gel electrophoresis, with a molecular mass of approx. 80 kDa. Histone H-1 and iris muscle MLC, but not rabbit skeletal-muscle MLC, were effective substrates for the enzyme, with apparent Km values of 3.0 and 16.6 microM respectively. The enzyme, with MLC as substrate, had the following characteristics. (a) Its activity was dependent on Ca2+ and phosphatidylserine (PS). In the presence of Ca2+ and PS, diolein and phorbol dibutyrate (PDBu) increased its activity by 61 and 65% respectively. Half-maximal activation of the enzyme (Ka) occurred at 10 microM free Ca2+, and in the presence of diolein and PDBu the apparent Ka for Ca2+ was decreased to 3 microM and 2 microM respectively. (b) Studies on the relative potency of various cofactors in activating the enzyme revealed that PS, phorbol myristate acetate and 1-stearoyl-2-arachidonylglycerol were the most potent of the phospholipids, phorbol esters and diacylglycerols respectively. (c) H-7, a protein kinase C inhibitor, inhibited MLC phosphorylation in a dose-dependent manner, with 50% inhibition at 10 microM. (d) Addition of carbamoylcholine (for 1 min) or PDBu (for 25 min) to iris sphincter muscle prelabelled with [32P]Pi specifically increased MLC phosphorylation, and only the stimulatory effect of the muscarinic agonist was blocked by atropine. The data provide additional support for a role for protein kinase C in the contractile response of the iris smooth muscle.  相似文献   

14.
In Escherichia coli and Salmonella enterica, the core oligosaccharide backbone of the lipopolysaccharide is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. In contrast, Klebsiella pneumoniae lacks phosphoryl groups in its core oligosaccharide but instead contains galacturonic acid residues that are proposed to serve a similar function in outer membrane stability. Gla(KP) is a UDP-galacturonic acid C4-epimerase that provides UDP-galacturonic acid for core synthesis, and the enzyme was biochemically characterized because of its potentially important role in outer membrane stability. High-performance anion-exchange chromatography was used to demonstrate the UDP-galacturonic acid C4-epimerase activity of Gla(KP), and capillary electrophoresis was used for activity assays. The reaction equilibrium favors UDP-galacturonic acid over UDP-glucuronic acid in a ratio of 1.4:1, with the K(m) for UDP-glucuronic acid of 13.0 microM. Gla(KP) exists as a dimer in its native form. NAD+/NADH is tightly bound by the enzyme and addition of supplementary NAD+ is not required for activity of the purified enzyme. Divalent cations have an unexpected inhibitory effect on enzyme activity. Gla(KP) was found to have a broad substrate specificity in vitro; it is capable of interconverting UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine, albeit at much lower activity. The epimerase GalE interconverts UDP-glucose/UDP-galactose. Multicopy plasmid-encoded gla(KP) partially complemented a galE mutation in S. enterica and in K. pneumoniae; however, chromosomal gla(KP) could not substitute for galE in a K. pneumoniae galE mutant in vivo.  相似文献   

15.
Alginate-producing Pseudomonas aeruginosa are usually associated with the cystic fibrosis lung environment and contribute to the high mortality rates observed among these patients. The present paper describes the purification and enzymatic properties of guanosine diphospho-D-mannose dehydrogenase (EC 1.1.1.132), a key enzyme in alginate biosynthesis by mucoid P. aeruginosa. The enzyme was overproduced using a plasmid vector containing algD (the gene encoding this enzyme) under control of the tac promoter. It was purified from cell-free lysates by lowering the pH to 5.0, heating the extract to 57.5 degrees C for 10 min, and discarding the protein pellet. The enzyme was selectively precipitated from the supernatant fraction with 45% acetone, resuspended in a 100 mM triethanolamine acetate buffer, pH 7.6, and ultimately purified by Bio-Sil TSK-400 gel filtration chromatography. The subunit molecular weight (Mr 48,000) as well as the N-terminal amino acid sequence corresponded to those predicted from the DNA sequence of algD. The native protein migrated as a hexamer of 290,000 molecular weight upon Bio-Gel A-1.5m gel filtration chromatography. Kinetic analysis demonstrated an apparent Km of 14.9 microM for the substrate GDP-D-mannose and 185 microM for the cofactor NAD+. GDP-D-mannuronic acid was identified as the enzyme reaction product. Several compounds (including GMP, ATP, GDP-D-glucose, and maltose) were found to inhibit enzymatic activity. GMP, the most potent of these inhibitors, exhibited competitive inhibition with an apparent Ki of 22.7 microM. Enzyme activity was also sensitive to the sulfhydryl group modifying agents iodoacetamide and p-hydroxymercuribenzoate. The addition of excess dithiothreitol restored enzyme activity, suggesting a possible involvement of cysteine residues in enzymatic activity.  相似文献   

16.
Tyvelose epimerase catalyzes the last step in the biosynthesis of tyvelose by converting CDP-d-paratose to CDP-d-tyvelose. This unusual 3,6-dideoxyhexose occurs in the O-antigens of some types of Gram-negative bacteria. Here we describe the cloning, protein purification, and high-resolution x-ray crystallographic analysis of tyvelose epimerase from Salmonella typhi complexed with CDP. The enzyme from S. typhi is a homotetramer with each subunit containing 339 amino acid residues and a tightly bound NAD+ cofactor. The quaternary structure of the enzyme displays 222 symmetry and can be aptly described as a dimer of dimers. Each subunit folds into two distinct lobes: the N-terminal motif responsible for NAD+ binding and the C-terminal region that harbors the binding site for CDP. The analysis described here demonstrates that tyvelose epimerase belongs to the short-chain dehydrogenase/reductase superfamily of enzymes. Indeed, its active site is reminiscent to that observed for UDP-galactose 4-epimerase, an enzyme that plays a key role in galactose metabolism. Unlike UDP-galactose 4-epimerase where the conversion of configuration occurs about C-4 of the UDP-glucose or UDP-galactose substrates, in the reaction catalyzed by tyvelose epimerase, the inversion of stereochemistry occurs at C-2. On the basis of the observed binding mode for CDP, it is possible to predict the manner in which the substrate, CDP-paratose, and the product, CDP-tyvelose, might be accommodated within the active site of tyvelose epimerase.  相似文献   

17.
An early development-specific soluble 55 kDa Ca(2+)-dependent protein kinase has been purified to homogeneity from sandalwood somatic embryos and biochemically characterized. The purified enzyme, swCDPK, resolved into a single band on 10% polyacrylamide gels, both under denaturing and non-denaturing conditions. swCDPK activity was strictly dependent on Ca(2+), K(0.5) (apparent binding constant) for Ca(2+)-activation of substrate phosphorylation activity being 0.7 microM and for autophosphorylation activity approximately 50 nM. Ca(2+)-dependence for activation, CaM-independence, inhibition by CaM-antagonist (IC(50) for W7=6 microM, for W5=46 microM) and cross-reaction with polyclonal antibodies directed against the CaM-like domain of soybean CDPK, confirmed the presence of an endogenous CaM-like domain in the purified enzyme. Kinetic studies revealed a K(m) value of 1.3 mg/ml for histone III-S and a V(max) value of 0.1 nmol min(-1) mg(-1). The enzyme exhibited high specificity for ATP with a K(m) value of 10 nM. Titration with calcium resulted in the enhancement of intrinsic emission fluorescence of swCDPK and a shift in the lambda(max) emission from tryptophan residues. A reduction in the efficiency of non-radiative energy transfer from tyrosine to tryptophan residues was also observed. These are taken as evidence for the occurrence of Ca(2+)-induced conformational change in swCDPK. The emission spectral properties of swCDPK in conjunction with Ca(2+) levels required for autophosphorylation and substrate phosphorylation help understand mode of Ca(2+) activation of this enzyme.  相似文献   

18.
A Ca2+- and phospholipid-dependent protein kinase (protein kinase C) was partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and phenyl-Sepharose. Enzyme activity was characterized with both histone and a 47 kDa platelet protein (P47) as substrates, because the properties of protein kinase C can be modified by the choice of substrate. Both phosphatidylserine and Ca2+ were required for kinase activity. With P47 as substrate, protein kinase C had a Ka for Ca2+ of 5 microM. Addition of diolein to the enzyme assay caused a marked stimulation of activity, especially at low Ca2+ concentrations, but the Ka for Ca2+ was shifted only slightly, to 2.5 microM. With histone as substrate, the enzyme had a very high Ka (greater than 50 microM) for Ca2+, which was substantially decreased to 3 microM-Ca2+ by diolein. A Triton X-100 mixed-micelle preparation of lipids was also utilized to assay protein kinase C with histone as the substrate. Under these conditions kinase activity was almost totally dependent on the presence of diolein; again, diolein caused a large decrease in the Ka for Ca2+, from greater than 100 microM to 2.5 microM. The increased sensitivity of protein kinase C to Ca2+ with P47 rather than histone, and the ability of diacylglycerol to activate protein kinase C without shifting the Ka for Ca2+, when P47 is the substrate, illustrate that the mechanism of protein kinase C activation is influenced by the exogenous substrate used to assay the enzyme.  相似文献   

19.
The possible involvement of protein kinase C and Ca2+ metabolism in the proteolytic enzyme release from schistosome cercariae was studied. Cercariae were placed in dechlorinated tap water containing 0.37 mM calcium in the small glass petri dish and exposed to the stimuli (linoleic acid, phorbol esters, and Ca2+ ionophore) with or without inhibitors of protein kinase C or Ca2+ metabolism. The proteolytic activity of incubation medium of cercariae thus treated was measured by the azocoll assay. The penetration response of cercariae induced by linoleic acid, a physiological stimulus, was mimicked by phorbol esters. When exposed to phorbol esters, 0.02 to 2 microM of 12-O-tetradecanoylphorbol-13-acetate (TPA) and 0.2 to 2 microM of phorbol-12,13-dibutyrate (PDBu), cercariae ceased the swimming movement, began a rhythmic thrusting of the anterior tip of the parasite, and released the proteolytic enzyme, but they did not shed the tails. Lowering Ca2+ in water by addition of 5 mM ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), phorbol ester-induced release of enzyme was completely inhibited. Phorbol ester-induced release of enzyme was partially inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, at a concentration of 100 microM. H-7 alone, at a concentration of 100 microM, did not affect the swimming movement of cercariae. The cercariae were stimulated to release the enzyme by high concentrations (10 and 100 microM) of the Ca2+ ionophore, A23187, but enzyme was not released by low concentrations (0.5 and 1 microM) of this drug. Cercariae exposed to A23187 behaved differently from those exposed to phorbol esters. They ceased swimming, showed strong muscle contraction, and shed their tail. A23187 stimulated cercariae to release the enzyme in the water containing 5 mM EGTA. A23187-induced enzyme release was not inhibited by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, trifluoperazine (TFP), a better calmodulin antagonist on schistosome, or by verapamil, a Ca2+ channel blocker. Linoleic acid-induced release of enzyme was partially inhibited by 0.5 and 5 mM of EGTA and by 1 to 100 microM of H-7. While it was not inhibited by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), inhibitors of cyclic nucleotide-dependent protein kinase which were used as negative controls of H-7, W-7, TFP, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an intracellular Ca2+ antagonist, and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The catalytic properties of myometrium sarcolemmal Ca2+, Mg2(+)-ATPase purified from plasma membrane solubilizate by affinity chromatography on calmodulin-Sepharose were investigated. The enzyme isolated in the presence of azolectin revealed a calmodulin-independent affinity for Ca2+ (Km = 0.17 microM). Purified Ca2+, Mg2(+)-ATPase displayed a strict substrate specificity, was inhibited by low concentrations of o-vanadate and was insensitive to oxytocin and prostaglandins E2 and F2 alpha. The enzyme activity was maximal at 45 degrees C, pH 7.5-8.0, and at Mg-ATP and Ca2+ concentrations of 1.5-2.5 mM and 5-20 microM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号