首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon isotope ratios (δ13C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ13C of soil respiratory CO2 on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO2 mole fraction and δ13C and continuous open chambers. δ13C of respired CO2 and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ13C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ13C variation was driven by non‐steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ13C of the soil surface CO2 flux. Seasonal δ13C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO2 source.  相似文献   

2.
A study was made of the effect of soil and crop type on the soil and total ecosystem respiration rates in agricultural soils in southern Finland. The main interest was to compare the soil respiration rates in peat and two different mineral soils growing barley, grass and potato. Respiration measurements were conducted during the growing season with (1) a closed-dynamic ecosystem respiration chamber, in which combined plant and soil respiration was measured and (2) a closed-dynamic soil respiration chamber which measured only the soil and root-derived respiration. A semi-empirical model including separate functions for the soil and plant respiration components was used for the total ecosystem respiration (TER), and the resulting soil respiration parameters for different soil and crop types were compared. Both methods showed that the soil respiration in the peat soil was 2–3 times as high as that in the mineral soils, varying from 0.11 to 0.36 mg (CO2) m–2 s–1 in the peat soil and from 0.02 to 0.17 mg (CO2) m–2 s–1 in the mineral soils. The difference between the soil types was mainly attributed to the soil organic C content, which in the uppermost 20 cm of the peat soil was 24 kg m–2, being about 4 times as high as that in the mineral soils. Depending on the measurement method, the soil respiration in the sandy soil was slightly higher than or similar to that in the clay soil. In each soil type, the soil respiration was highest on the grass plots. Higher soil respiration parameter values (Rs0, describing the soil respiration at a soil temperature of 10°C, and obtained by modelling) were found on the barley than on the potato plots. The difference was explained by the different cultivation history of the plots, as the potato plots had lain fallow during the preceding summer. The total ecosystem respiration followed the seasonal evolution in the leaf area and measured photosynthetic flux rates. The 2–3-fold peat soil respiration term as compared to mineral soil indicates that the cultivated peat soil ecosystem is a strong net CO2 source.  相似文献   

3.
This study investigated the spatial and temporal variation in soil carbon dioxide (CO2) efflux and its relationship with soil temperature, soil moisture and rainfall in a forest near Manaus, Amazonas, Brazil. The mean rate of efflux was 6.45±0.25 SE μmol CO2 m?2s?1 at 25.6±0.22 SE°C (5 cm depth) ranging from 4.35 to 9.76 μmol CO2 m?2s?1; diel changes in efflux were correlated with soil temperature (r2=0.60). However, the efflux response to the diel cycle in temperature was not always a clear exponential function. During period of low soil water content, temperature in deeper layers had a better relationship with CO2 efflux than with the temperature nearer the soil surface. Soil water content may limit CO2 production during the drying‐down period that appeared to be an important factor controlling the efflux rate (r2=0.39). On the other hand, during the rewetting period microbial activity may be the main controlling factor, which may quickly induce very high rates of efflux. The CO2 flux chamber was adapted to mimic the effects of rainfall on soil CO2 efflux and the results showed that efflux rates reduced 30% immediately after a rainfall event. Measurements of the CO2 concentration gradient in the soil profile showed a buildup in the concentration of CO2 after rain on the top soil. This higher CO2 concentration developed shortly after rainfall when the soil pores in the upper layers were filled with water, which created a barrier for gas exchange between the soil and the atmosphere.  相似文献   

4.
Soil CO2 efflux and pCO2 in the soil atmosphere were measured during one year at three montane sites of Mediterranean sclerophyllous forests in NE Spain. Two sites were located in the upper and lower slopes of a small catchment in the Prades mountains (mean precipitation 550 mm year–1), and a third site was located on a lower slope in the Montseny mountains (mean precipitation 900 mm year–1). The three sites were similar in bedrock and vegetation, but differed in soil characteristics and water availability. Seasonal variation of CO2 efflux and soil pCO2 were affected by soil temperature and, to a lesser extent, by soil moisture. Annual mean soil CO2 efflux (considered as soil respiration) was similar at Montseny and at the comparably located site at Prades (83 ± 18 S.E. vs. 75 ± 9 mg CO2 m–2 hour–1 , respectively), and was highest at the Prades upper slope site (122 ± 22 mg C02 m–2 hour–1 ). Despite those relatively similar CO2 effluxes, mean soil pCO2 was much higher at both Prades sites than at Montseny. Soil pCO2 always increased with depth at Prades while maxima pCO2 at Montseny were often at 20–30 cm depth. A model based on gas diffusion theory was able to explain why soil pCO2 was much higher at Prades than at Montseny, and to reproduce the shape of the vertical profile of pCO2 at the Prades soils. Nevertheless, the model failed to simulate the soil pCO2 maximum found at 20–30 cm depth at the Montseny site. Model simulations using a time-variable CO2 production rate suggested that pCO2 maxima at intermediate depth could be the result of a transient situation instead of an equilibrium one.  相似文献   

5.
Influence of soil temperature on methane emission from rice paddy fields   总被引:18,自引:2,他引:16  
Methane emission rates from an Italian rice paddy field showed diel and seasonal variations. The seasonal variations were not closely related to soil temperatures. However, the dieL changes of CH4 fluxes were significantly correlated with the diel changes of the temperature in a particular soil depth. The soil depths with the best correlations between CH4 flux and temperature were shallow (1–5cm) in May and June, deep (10–15cm) in June and July, and again shallow (1–5 cm) in August. Apparent activation energies (Ea) calculated from these correlations using the Arrhenius model were relatively low (50–150 kJ mol–1) in May and June, but increased to higher values (80–450 kJ mol–1) in August. In the laboratory, CH4 emission from two rice cultures incubated at temperatures between 20 and 38°C showed E . values of 41 and 53 kJ mol–1) Methane production in anoxic paddy soil suspensions incubated between 7 and 43°C showed E values between 53 and 132 kJ mol–1 with an average value of 85 kJ mol–1) and in pure cultures of hydrogenotrophic methanogenic bacteria E a values between 77 and 173 (average 126) kJ mol–1. It is suggested that diel changes of soil properties other than temperature affect CH4 emission rates, e.g. diel changes in root exudation or in efficiency of CH4 oxidation in the rhizosphere.  相似文献   

6.
Keith  H.  Jacobsen  K.L.  Raison  R.J. 《Plant and Soil》1997,190(1):127-141
Rates of soil respiration (CO2 efflux) were measured for a year in a mature Eucalyptus pauciflora forest in unfertilized and phosphorus-fertilized plots. Soil CO2 efflux showed a distinct seasonal trend, and average daily rates ranged from 124 to 574 mg CO2 m–2 hr–1. Temperature and moisture are the main variables that cause variation in soil CO2 efflux; hence their effects were investigated over a year so as to then differentiate the treatment effect of phosphorus (P) nutrition.Soil temperature had the greatest effect on CO2 efflux and exhibited a highly significant logarithmic relationship (r2 = 0.81). Periods of low soil and litter moisture occurred during summer when temperatures were greater than 10 °C, and this resulted in depression of soil CO2 efflux. During winter, when temperatures were less than 10 °C, soil and litter moisture were consistently high and thus their variation had little effect on soil CO2 efflux. A multiple regression model including soil temperature, and soil and litter moisture accounted for 97% of the variance in rates of CO2 efflux, and thus can be used to predict soil CO2 efflux at this site with high accuracy. Total annual efflux of carbon from soil was estimated to be 7.11 t C ha–1 yr–1. The model was used to predict changes in this annual flux if temperature and moisture conditions were altered. The extent to which coefficients of the model differ among sites and forest types requires testing.Increased soil P availability resulted in a large increase in stem growth of trees but a reduction in the rate of soil CO2 efflux by approximately 8%. This reduction is suggested to be due to lower root activity resulting from reduced allocation of assimilate belowground. Root activity changed when P was added to microsites within plots, and via the whole tree root system at the plot level. These relationships of belowground carbon fluxes with temperature, moisture and nutrient availability provide essential information for understanding and predicting potential changes in forest ecosystems in response to land use management or climate change.  相似文献   

7.
Changes in land management and reductions in fire frequency have contributed to increased cover of woody species in grasslands worldwide. These shifts in plant community composition have the potential to alter ecosystem function, particularly through changes in soil processes and properties. In semi-arid grasslands, the invasion of shrubs and trees is often accompanied by increases in soil resources and more rapid N and C cycling. We assessed the effects of shrub encroachment in a mesic grassland in Kansas (USA) on soil CO2 flux, extractable inorganic N, and N mineralization beneath shrub communities (Cornus drummondii) and surrounding undisturbed grassland sites. In this study, a shift in plant community composition from grassland to shrubland resulted in a 16% decrease in annual soil CO2 flux(4.78 kg CO2 m–2 year–1 for shrub dominated sites versus 5.84 kg CO2 m–2 year–1 for grassland sites) with no differences in total soil C or N or inorganic N. There was considerable variability in N mineralization rates within sites, which resulted in no overall difference in cumulative N mineralized during this study (4.09 g N m–2 for grassland sites and 3.03 g N m–2 for shrub islands). These results indicate that shrub encroachment into mesic grasslands does not significantly alter N availability (at least initially), but does alter C cycling by decreasing soil CO2 flux.  相似文献   

8.
Soil CO2 evolution rates, soil temperatures and moisture were measured during the dry season in two forest-to-pasture chronosequences in Rondônia, Brazil. The study included pastures ranging from 3 to 80 years-old. Mean dry-season CO2 evolution from the forest in chronosequence 1, 88.8 mg CO2-C m–2h–1 was lower than from the pastures which ranged from 111 to 158 mg CO2-C m–2h–1. We found that temperature was not a good predictor of CO2 emissions from pasture but that there was a significant relationship (r = 0.72,p < 0.05) between soil moisture and pasture emissions. The 13C of the soil CO2 emissions also was measured on chronosequence I; 13C of the CO2 emitted from the C3 forest was –29.43%. Pasture13CO2 values increased from –17.91%. in the 3 year-old pasture to –12.86% in the 80 year-old, reflecting the increasing C4 inputs with pasture age. Even in the youngest (3 year-old) pasture, 70 percent of the CO2 evolved originated from C4 pasture-derived carbon.  相似文献   

9.
Our objectives were to quantify and compare soil CO2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO2 release. We measured soil CO2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). At the same time we measured soil CO2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between old alluvium sites, the two-year average CO2 flux rates ranged from 117.3 to 128.9 mg C m–2 h–1. Significantly higher soil CO2 flux occurred on the residual sites (141.1 to 184.2 mg C m–2 h–1). Spatial differences in CO2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO2 storage was high and the amount of CO2 stored in the upper and lower soil profile was different between old alluvial and residual sites. The major factor identified for explaining temporal variations in soil CO2 efflux was soil water content. During periods of high soil water content CO2 emission decreased, probably due to lower diffusion and CO2 production rates. During the 2-year study period inter-annual variation in soil CO2 efflux was not detected.  相似文献   

10.
We have investigated a subset of restoration practices applied to a degraded pasture at Fazenda Nova Vida, a 22000 ha cattle ranch in Rond^onia, Brazil. Nitric oxide (NO) and carbon dioxide (CO2) emissions from soils were measured in conventional tillage and current pasture sites to assess N and C losses. Mean daily NO emissions from tilled plots were at least twice those from the pasture. Nitric oxide emissions from the tilled sites showed a strong diurnal pattern, while those from the pasture sites did not. Mean daytime NO emissions from the tilled sites were 9.7 g NO-N m–2 h–1, while mean nighttime emissions were 29.7 g NO-N m–2 h–1. In the pasture sites, NO emissions were 7.6 g NO-N m–2 h–1 during the day, and 7.7 g NO-N m–2 h–1 at night. Surface soil temperature was a good inverse predictor (r 2=0.75) of NO emissions from the tilled sites. Carbon dioxide emissions from the tilled sites were generally larger than CO2 emissions from the pasture sites. The mean CO2 emission rate from the tilled sites was 179 mg C m–2 h–1, while it was 123 mg C m–2 h–1 from the pasture sites. There was no distinct diurnal pattern for CO2 emissions. We found that the very high temperatures measured at the soil surface in the tillage plots, in the range of 40–45°C, reduced the rate of NO emission. The reduction in NO emissions may be because of the sensitivity of autotrophic nitrifiers to high temperatures. This study provides insights on how land-use change may alter regional NO fluxes by exposing certain microbial communities to extreme environmental conditions. Future studies of NO emissions in tropical agricultural systems where soils are bare for extend periods need to make diurnal measurements or the daily fluxes will be substantially underestimated.  相似文献   

11.
Mosier  A.R.  Morgan  J.A.  King  J.Y.  LeCain  D.  Milchunas  D.G. 《Plant and Soil》2002,240(2):201-211
In late March 1997, an open-top-chamber (OTC) CO2 enrichment study was begun in the Colorado shortgrass steppe. The main objectives of the study were to determine the effect of elevated CO2 (720 mol mol–1) on plant production, photosynthesis, and water use of this mixed C3/C4 plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by CO2 on trace gas exchange. From this study, we report here our weekly measurements of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs. Soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2000. Even though both C3 and C4 plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions, none of the trace gas fluxes were significantly altered by CO2 enrichment. Over the 43 month period of observation NOx and N2O flux averaged 4.3 and 1.7 in ambient and 4.1 and 1.7 g N m–2 hr –1 in elevated CO2 OTCs, respectively. NOx flux was negatively correlated to plant biomass production. Methane oxidation rates averaged –31 and –34 g C m–2 hr–1 and ecosystem respiration averaged 43 and 44 mg C m–2 hr–1 under ambient and elevated CO2, respectively, over the same time period.  相似文献   

12.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   

13.
CO2 flux from the soil was measured in situ under oil palms in southern Benin. The experimental design took into account the spatial variability of the root density, the organic matter in the soil-palm agrosystem and the effect of factors such as the soil temperature and moisture.Measurements of CO2 release in situ, and a comparison with the results obtained in the laboratory from the same soil free of roots, provided an estimation of the roots contribution to the total CO2 flux. The instantaneous values for total release in situ were between 3.2 and 10.0 mol CO2 m-2 s-1. For frond pile zones rich in organic matter, and around oil palm trunks, root respiration accounted for 30% of the efflux when the soil was at field capacity and 80% when the soil was dry with a pF close to 4.2. This proportion remained constant in interrow zones at around 75%, irrespective of soil moisture.Subsequently carbon allocation to the roots was determined. Total CO2 release over a year was 57 Mg of CO2 ha-1 yr-1 (around 1610 g of C per m2 per year), and carbon allocation to the roots was approximately 53 Mg of CO2 ha-1 yr-1 of which approximately 13 Mg CO2 ha-1 yr-1 (25%) was devoted to turn-over and 40 Mg CO2 ha-1 yr-1 (75%) to respiration.  相似文献   

14.
We measured soil oxygen concentrations at 10 and 35 cm depths and indices of biogeochemical cycling in upland forest soils along a rainfall and elevation gradient (3500–5000 mm y–1; 350–1050 masl) and along topographic gradients (ridge to valley, 150 m) in the Luquillo Experimental Forest, Puerto Rico. Along the rainfall gradient, soil O2 availability decreased significantly with increasing annual rainfall, and reached very low levels (<3%) in individual chambers for up to 25 consecutive weeks over 82 weeks of study. Along localized topographic gradients, soil O2 concentrations were variable and decreased significantly from ridges to valleys. In the valleys, up to 35% of the observations at 10–35 cm depth were <3% soil O2. Cross correlation analyses showed that soil O2 concentrations were significantly positively correlated along the topographic gradient, and were sensitive to rainfall and hydrologic output. Soil O2 concentrations in valley soils were correlated with rainfall from the previous day, while ridge sites were correlated with cumulative rainfall inputs over 4 weeks. Soils at the wettest point along the rainfall gradient had very high soil methane concentrations (3–24%) indicating a strong influence of anaerobic processes. We measured net methane emission to the atmosphere at the wettest sites of the rainfall gradient, and in the valleys along topographic gradients. Other measures of biogeochemical function such as soil organic matter content and P availability were sensitive to chronic O2 depletion along the rainfall gradient, but less sensitive to the variable soil O2 environment exhibited at lower elevations along topographic gradients.  相似文献   

15.
Variation in soil temperature can account for most of the seasonal and diel variation in soil CO2 efflux, but the temperature effect is not always consistent, and other factors such as soil water content are known to influence soil respiration. The objectives of this research were to study the spatial and temporal variation in soil respiration in a temperate forested landscape and to evaluate temperature and soil water functions as predictors of soil respiration. Soil CO2 fluxes were measured with chambers throughout an annual cycle in six study areas at the Harvard Forest in central Massachusetts that include soil drainage classes from well drained to very poorly drained. The mean annual estimate of soil CO2 efflux was 7.2 Mg ha–1, but ranged from 5.3 in the swamp site to 8.5 in a well-drained site, indicating that landscape heterogeneity is related to soil drainage class. An exponential function relating CO2 fluxes to soil temperature accounted for 80% of the seasonal variation in fluxes across all sites (Q10 = 3.9), but the Q10 ranged from 3.4 to 5.6 for the individual study sites. A significant drought in 1995 caused rapid declines in soil respiration rates in August and September in five of the six sites (a swamp site was the exception). This decline in CO2 fluxes correlated exponentially with decreasing soil matric potential, indicating a mechanistic effect of drought stress. At moderate to high water contents, however, soil water content was negatively correlated with soil temperature, which precluded distinguishing between the effects of these two confounded factors on CO2 flux. Occurrence of high Q10 values and variation in Q10 values among sites may be related to: (i) confounding effects of high soil water content; (ii) seasonal and diel patterns in root respiration and turnover of fine roots that are linked to above ground phenology and metabolism; and (iii) variation in the depth where CO2 is produced. The Q10 function can yield reasonably good predictions of annual fluxes of CO2, but it is a simplification that masks responses of root and microbial processes to variation in temperature and water content throughout the soil.  相似文献   

16.
Contrasting soil respiration in young and old-growth ponderosa pine forests   总被引:14,自引:0,他引:14  
Three years of fully automated and manual measurements of soil CO2 efflux, soil moisture and temperature were used to explore the diel, seasonal and inter‐annual patterns of soil efflux in an old‐growth (250‐year‐old, O site) and recently regenerating (14‐year‐old, Y site) ponderosa pine forest in central Oregon. The data were used in conjunction with empirical models to determine which variables could be used to predict soil efflux in forests of contrasting ages and disturbance histories. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. Soil CO2 efflux at both sites showed large inter‐annual variability that could be attributed to soil moisture availability in the deeper soil horizons (O site) and the quantity of summer rainfall (Y site). Seasonal patterns of soil CO2 efflux at the O site showed a strong positive correlation between diel mean soil CO2 efflux and soil temperature at 64 cm depth whereas diel mean soil efflux at the Y site declined before maximum soil temperature occurred during summer drought. The use of diel mean soil temperature and soil water potential inferred from predawn foliage water potential measurements could account for 80% of the variance of diel mean soil efflux across 3 years at both sites, however, the functional shape of the soil water potential constraint was site‐specific. Based on the similarity of the decomposition rates of litter and fine roots between sites, but greater productivity and amount of fine litter detritus available for decomposition at the O site, we would expect higher rates of soil CO2 efflux at the O site. However, annual rates were only higher at the O site in one of the 3 years (597 ± 45 vs. 427 ± 80 g C m?2). Seasonal patterns of soil efflux at both sites showed influences of soil water limitations that were also reflected in patterns of canopy stomatal conductance, suggesting strong linkages between above and below ground processes.  相似文献   

17.
Li  Zhong  Yagi  K.  Sakai  H.  Kobayashi  K. 《Plant and Soil》2004,258(1):81-90
Rice (Oryza sativa) was grown in six sunlit, semi-closed growth chambers for two seasons at 350 L L–1 (ambient) and 650 L L–1 (elevated) CO2 and different levels of nitrogen (N) supplement. The objective of this research was to study the influence of CO2 enrichment and N nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon (DOC) and dissolved CH4. Elevated CO2 concentration ([CO2]) demonstrated a wide range of enhancement to both above- and below-ground plant biomass, in particular to stems and roots (for roots when N was not limiting) in the mid-season (80 days after transplanting) and stems/ears at the final harvest, depending on season and the level of N supplement. Elevated [CO2] significantly increased microbial biomass carbon in the surface 5 cm soil when N (90 kg ha–1) was in sufficient supply. Low N supplement (30 kg ha–1) limited the enhancement of root growth by elevated [CO2], leading consequently to diminished response of soil microbial biomass carbon to CO2 enrichment. The concentration of dissolved CH4 (as well as soil DOC, but to a lesser degree) was observed to be positively related to elevated [CO2], especially at high rate of N application (120 kg ha–1) or at 10 cm depth (versus 5 cm depth) in the later half of the growing season (at 80 kg N ha–1). Root senescence in the late season complicated the assessment of the effect of elevated [CO2] on root growth and soil organic carbon turnover and thus caution should be taken when interpreting respective high CO2 results.  相似文献   

18.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

19.
Temperate forests of North America are thought to besignificant sinks of atmospheric CO2. Wedeveloped a below-ground carbon (C) budget forwell-drained soils in Harvard Forest Massachusetts, anecosystem that is storing C. Measurements of carbonand radiocarbon (14C) inventory were used todetermine the turnover time and maximum rate ofCO2 production from heterotrophic respiration ofthree fractions of soil organic matter (SOM):recognizable litter fragments (L), humified lowdensity material (H), and high density ormineral-associated organic matter (M). Turnover timesin all fractions increased with soil depth and were2–5 years for recognizable leaf litter, 5–10 years forroot litter, 40–100+ years for low density humifiedmaterial and >100 years for carbon associated withminerals. These turnover times represent the timecarbon resides in the plant + soil system, and mayunderestimate actual decomposition rates if carbonresides for several years in living root, plant orwoody material.Soil respiration was partitioned into two componentsusing 14C: recent photosynthate which ismetabolized by roots and microorganisms within a yearof initial fixation (Recent-C), and C that is respiredduring microbial decomposition of SOM that resides inthe soil for several years or longer (Reservoir-C).For the whole soil, we calculate that decomposition ofReservoir-C contributes approximately 41% of thetotal annual soil respiration. Of this 41%,recognizable leaf or root detritus accounts for 80%of the flux, and 20% is from the more humifiedfractions that dominate the soil carbon stocks.Measurements of CO2 and 14CO2 in thesoil atmosphere and in total soil respiration werecombined with surface CO2 fluxes and a soil gasdiffusion model to determine the flux and isotopicsignature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cmof the soil (O + A + Ap horizons). The average residencetime of Reservoir-C in the plant + soil system is8±1 years and the average age of carbon in totalsoil respiration (Recent-C + Reservoir-C) is 4±1years.The O and A horizons have accumulated 4.4 kgC m–2above the plow layer since abandonment by settlers inthe late-1800's. C pools contributing the most to soilrespiration have short enough turnover times that theyare likely in steady state. However, most C is storedas humified organic matter within both the O and Ahorizons and has turnover times from 40 to 100+ yearsrespectively. These reservoirs continue to accumulatecarbon at a combined rate of 10–30 gC mminus 2yr–1. This rate of accumulation is only 5–15% of the total ecosystem C sink measured in this stand using eddy covariance methods.  相似文献   

20.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号